Empirical Inference

Hippocampal-Cortical Interaction during Periods of Subcortical Silence

2012

Article

ei


Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

Author(s): Logothetis, NK. and Eschenko, O. and Murayama, Y. and Augath, M. and Steudel, T. and Evrard, HC. and Besserve, M. and Oeltermann, A.
Journal: Nature
Volume: 491
Pages: 547-553
Year: 2012
Month: November
Day: 22

Department(s): Empirical Inference
Bibtex Type: Article (article)

Digital: 0
DOI: 10.1038/nature11618

Links: Web

BibTex

@article{LogothetisEMASEBO2012,
  title = {Hippocampal-Cortical Interaction during Periods of Subcortical Silence},
  author = {Logothetis, NK. and Eschenko, O. and Murayama, Y. and Augath, M. and Steudel, T. and Evrard, HC. and Besserve, M. and Oeltermann, A.},
  journal = {Nature},
  volume = {491},
  pages = {547-553},
  month = nov,
  year = {2012},
  doi = {10.1038/nature11618},
  month_numeric = {11}
}