Header logo is ei

Uncovering the Temporal Dynamics of Diffusion Networks

2011

Conference Paper

ei


Time plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.

Author(s): Gomez Rodriguez, M. and Balduzzi, D. and Schölkopf, B.
Book Title: Proceedings of the 28th International Conference on Machine Learning
Pages: 561-568
Year: 2011
Month: July
Day: 0
Editors: L. Getoor and T. Scheffer
Publisher: Omnipress

Department(s): Empirical Inference
Research Project(s): Structure and Dynamics of Diffusion Networks
Bibtex Type: Conference Paper (inproceedings)

Event Name: ICML 2011
Event Place: Bellevue, WA, USA

Address: Madison, WI, USA
ISBN: 978-1-450-30619-5

Links: PDF
Web

BibTex

@inproceedings{GomezRodriguezBS2011,
  title = {Uncovering the Temporal Dynamics of Diffusion Networks},
  author = {Gomez Rodriguez, M. and Balduzzi, D. and Sch{\"o}lkopf, B.},
  booktitle = {Proceedings of the 28th International Conference on Machine Learning},
  pages = {561-568},
  editors = {L. Getoor and T. Scheffer},
  publisher = {Omnipress},
  address = {Madison, WI, USA},
  month = jul,
  year = {2011},
  month_numeric = {7}
}