Header logo is ei

Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

2009

Article

ei


Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

Author(s): Hachiya, H. and Akiyama, T. and Sugiyama, M. and Peters, J.
Journal: Neural Networks
Volume: 22
Number (issue): 10
Pages: 1399-1410
Year: 2009
Month: December
Day: 0

Department(s): Empirical Inference
Bibtex Type: Article (article)

Digital: 0
DOI: 10.1016/j.neunet.2009.01.002
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF
Web

BibTex

@article{5530,
  title = {Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning},
  author = {Hachiya, H. and Akiyama, T. and Sugiyama, M. and Peters, J.},
  journal = {Neural Networks},
  volume = {22},
  number = {10},
  pages = {1399-1410},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = dec,
  year = {2009},
  month_numeric = {12}
}