Header logo is ei

Near-Maximum Entropy Models for Binary Neural Representations of Natural Images

2008

Conference Paper

ei


Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis feasible for very high-dimensional data - the model parameters can be derived in closed form and sampling is easy. We demonstrate its usefulness by studying a simple neural representation model of natural images. For the first time, we are able to directly compare predictions from a pairwise maximum entropy model not only in small groups of neurons, but also in larger populations of more than thousand units. Our results indicate that in such larger networks interactions exist that are not predicted by pairwise correlations, despite the fact that pairwise correlations explain the lower-dimensional marginal statistics extrem ely well up to the limit of dimensionality where estimation of the full joint distribution is feasible.

Author(s): Bethge, M. and Berens, P.
Book Title: Advances in neural information processing systems 20
Journal: Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007
Pages: 97-104
Year: 2008
Month: September
Day: 0
Editors: Platt, J. C., D. Koller, Y. Singer, S. Roweis
Publisher: Curran

Department(s): Empirical Inference
Bibtex Type: Conference Paper (inproceedings)

Event Name: Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007)
Event Place: Vancouver, BC, Canada

Address: Red Hook, NY, USA
Digital: 0
ISBN: 978-1-605-60352-0
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF
Web

BibTex

@inproceedings{4729,
  title = {Near-Maximum Entropy Models for Binary Neural Representations of Natural Images},
  author = {Bethge, M. and Berens, P.},
  journal = {Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007},
  booktitle = {Advances in neural information processing systems 20},
  pages = {97-104},
  editors = {Platt, J. C., D. Koller, Y. Singer, S. Roweis},
  publisher = {Curran},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  address = {Red Hook, NY, USA},
  month = sep,
  year = {2008},
  month_numeric = {9}
}