A learning algorithm is the backbone of ma-
chine learning that distinguishes it from tradi-
tional computer programming by allowing data-
driven model building. In the past years, we have
developed learning algorithms using a number
and tools and for diverse application domains, as
outlined below.

Learning with Kernels Kernel methods offer
a mathematically elegant arsenal to help tackle
several problems that arise in machine learn-
ing ranging from probabilistic inference to deep
learning. Recently, a subfield of kernel meth-
ods known as Hilbert space embedding of dis-
tributions has gained increasing popularity [59],
thanks to foundational work done in our depart-
ment during the last 10+ years. For a probability
distribution P over a measurable space X, the
kernel mean embedding of P can is defined as
the mapping 1o : P — [ k(z,-) dP(z) where
k: X x X — Ris a positive definite kernel
function. Its applications include, but are not
limited to, comparing real-world distributions
on the basis of samples, differentially private
learning, and determining goodness-of-fit of a
model.

Our department has an ongoing history of con-
tributions to the state-of-the-art in this area. In
[155], we develop privacy-preserving algorithms
based on the kernel mean embedding that allow
one to release a database while guaranteeing the
privacy of each record in the database.

In applications such as probabilistic program-
ming, transforming a base random variable X
with a function f forms a basic building block
to manipulate a probabilistic model. It then be-
comes necessary to characterize the distribution
of f(X). In [227], we show that for any con-
tinuous function f, consistent estimators of the
mean embedding of a random variable X lead
to consistent estimators of the mean embedding
of f(X). For Matérn kernels and sufficiently
smooth functions, we also provide rates of con-
vergence.

In [126], we address the problem of measuring
the relative goodness of fit of two models using
kernel mean embeddings. Given two candidate
models, and a set of target observations, the goal
is to produce a set of interpretable examples (so-
called informative features) which indicate the
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regions in the data domain where one model fits
better than the other. The task is formulated as
a statistical test whose runtime complexity is
linear in the sample size.

-~

Figure 1.5: The Rosenbrock function, a non-convex func-
tion which serves as a test-bed for optimization algo-
rithms (image credit: Wikipedia)

Optimization for Machine Learning Opti-
mization lies at the heart of most machine learn-
ing algorithms. Characteristics of modern large-
scale machine learning problems include: high-
dimensional, noisy, and uncertain data; huge vol-
umes of batch or streaming data; intractable mod-
els, low accuracy, and reliance on distributed
computation or stochastic approximations. Op-
timizing under these settings with approaches
such as coordinate descent and the Frank-Wolfe
algorithm has shown promosing results in recent
years. The high-level goal of research in opti-
mization in our department is to understand the
convergence property of coordinate descent as
well as Frank-Wolfe optimization algorithms un-
der different sampling schemes and constraints.

It is well known that greedy coordinate de-
scent (CD) converges faster in practice than the
randomized version, however the properties of
greedy CD were less well understood. In [188],
we provide a theoretical understanding of greedy
coordinate descent for smooth functions. We also
propose an approximate greedy CD approach
which is computationally cheap and always prov-
ably better than the randomized version. Simi-
larly, in [172] we propose an adaptive recursive
sampling scheme based on the min-max opti-
mal solution of the variance reduction problem
to achieve faster convergence for CD. The pro-
posed approach can also be applied to stochastic
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gradient descent.

Matching pursuit (MP), Frank-Wolfe (FW),
and coordinate descent do have a similar struc-
ture of the optimization problem. A connection
between MP and coordinate descent is explored
in [144]. We also prove the rate for accelerated
matching pursuit, which was not known previ-
ously. The MP algorithm for optimization over
conic hulls is proposed in [170]. In [143], an
easy-to-implement conditional gradient method
is proposed for a composite minimization prob-
lem, which converges at the rate of O(1/Vk).
In a different line of work, we propose a Frank-
Wolfe based approach to boost variational in-
ference [151], which enables us to analyze the
convergence of the proposed framework under
suitable assumptions.

Extreme Classification Extreme multi-label
classification refers to supervised multi-label
learning involving hundreds of thousands or even
millions of labels. It has been shown that ma-
chine learning problems arising in tasks such as
recommendation, ranking, and web-advertising
can be reduced to the framework of extreme
classification. It had been long conjectured that
a binary-relevance-based one-vs-rest scheme is
not statistically and computationally tenable for
such scenarios. Surprisingly, we have been able
to show in our recent work [204], that a Ham-
ming loss minimizing one-vs-rest paradigm is
key to getting good prediction performance, as
well as to efficient training (by enabling paral-
lel training). DiSMEC [204], when published
in 2016, surpassed the contemporary state-of-
the-art methods by up to 10% points on vari-
ous datasets consisting of up to a million la-
bels. Since then, it has been a top-performing
benchmark method in this domain for over two
years now. The concurrent training coupled with
model pruning paradigms in DiSMEC have mo-
tivated algorithms by Microsoft research which
have been used in the Bing Search engine for
dynamic search advertising and related searches.

Neural Networks Research interest in deep
neural networks, especially in the generative ad-
versarial network (GAN) approach [112, 135,
150, 200, 202], has increased substantially in
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recent years. In [150], we propose a simple mod-
ule to improve a GAN by preprocessing samples
with a network that initially makes the task of the
discriminator harder (akin to a data smoothing),
thus simplifying the generator’s task. This leads
to a tempered learning process for both generator
and discriminator. In a number of experiments,
the proposed method can improve quality, stabil-
ity and/or convergence speed across a range of
different GAN architectures (DCGAN, LSGAN,
WGAN-GP). In [200], we propose the AdaGAN,
a boosting style meta-algorithm which can be
combined with various modern generative mod-
els (including GANs and VAEs) to improve their
quality. We provide an optimal closed form so-
lution for performing greedy updates to approx-
imate an unknown distribution with a sequen-
tially built mixture in any given f-divergence.
The paper establishes a fruitful connection be-
tween learning theory and neural network re-
search and has already attracted a large amount
of follow-up work.

The work [201] develops a deep neural net-
work that can learn to write programs from a
corpus of program induction problems. The ap-
proach leads to an order of magnitude speedup
over strong baselines and an approach based on
a recurrent neural network (RNN).

Ideas from causality are beginning to influ-
ence our work on machine learning, and the
notion of independent causal mechanism has
been adopted in several areas including semi-
supervised learning, domain adaptation, and
transfer learning. From a deep learning perspec-
tive, we investigated whether a set of indepen-
dent mechanisms can be recovered using deep
neural networks [139]. We proposed an algo-
rithm that enables a set of experts (i.e., deep neu-
ral networks) to recover independent (inverse)
mechanisms from a data set that has undergone
unlabelled transformations. Using a competitive
training procedure, the experts specialize to dif-
ferent mechanisms. Not only can the mecha-
nisms be learned successfully, but the system
also generalizes to transformed data in other do-
mains.

More information: https://ei.is.mpg.de/project/learning-algorithms
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