Automatic Estimation of Modulation Transfer Functions

Matthias Bauer1,2, Valentin Volchkov1, Michael Hirsch2, Bernhard Schölkopf1,3
1Max Planck Institute for Intelligent Systems, Tübingen, 2University of Cambridge, 3Amazon Research

Motivation

Lens Quality Assessment is expensive and time consuming...

- simple/cheap
- complex/expensive
- visual inspection of images
- MTF test charts
- wavefront sensor
- artificial stars
- MTF test station
- qualitative
- quantitative

The Modulation Transfer Function (MTF) is a standard measure for camera lens quality.

What is the Modulation Transfer Function?

The MTF characterises how contrast is diminished by optical aberrations (blur)

\[
\text{MTF}(f) = \frac{C(f)}{C(0)}
\]

- The Point Spread Function (PSF) characterises the local blur and is spatially varying across the field of view. It is related to the MTF by a Fourier Transformation:

\[
\text{PSF}(\nu) \propto \text{MTF}(f) \cdot \text{FT}(\nu)
\]

- Global MTF charts summarise the MTF for fixed frequencies (10 cm/mm, 20 cm/mm, etc.) over the entire field of view and are typically provided by manufacturers.

The MTF is measured locally in radial and tangential direction

Global coordinates \((r, \phi)\) indicate the patch location

Local patch coordinates \((u, v)\) denote the radial \((u)\) and tangential \((v)\) direction within a patch

Meridional lines measure the radial MTF

Sagittal lines measure the tangential MTF

Ground Truth PSF/MTF Measurements

Custom-built pinhole array of 2 m \(\times\) 1.5 m to record the point spread function (PSF) at 80 \(\times\) 60 = 4800 locations over the entire field of view

The image of a point light source is a local measurement of PSF

Set up a Supervised Training Task

Inputs: Synthetically blurred patches

Outputs: MTF values of the blur

MTF10, MTF20, MTF30, MTF40

Ground truth training and validation data

1. Sharp image patches
 - regular patterns [Joshi2006]
 - patches from photos in the wild

2. Lens blurs
 - real blurs from pinhole array
 - artificial blurs (e.g. sum of Gaussian)

Comparison to other Methods

MTFs from state-of-the-art blind image deconvolution [Michaeli2014]

Photometric MTF measurements from test charts [Burns2000, Loebich2007]

Our work: MTF Estimation from a Batch of Photos

- Estimate entire global MTF charts from a batch of photographs within minutes
- Good qualitative and quantitative agreement with photometric measurements

Experimental Results

Results for a regular pattern [Joshi2008]

- Estimates from synthetically blurred patches are almost perfect (for all lenses)
- Very good quantitative and qualitative agreement (errors are similar for other lenses)

Results for photographs of natural scenes

- Typically, very good qualitative and good quantitative agreement

Limitations and explanation of discrepancies

Curvature of the focal plane. The PSF panel is completely flat, while natural scenes have depth variations; corners may appear sharper than PSF measurements

Not all patches are suitable. Objects not in focus (e.g. protruding objects); homogeneous/texture-less areas (e.g. sky); edges in only one direction

Mitigation strategy. Carefully select photos; future work: automatically select patches

Estimates improve with more images

References

- Burns2000
- Loebich2007
- Michaeli2014

\[\text{ICCP 2018} \quad \text{https://ei.is.mpg.de/projects/mtf-estimation} \quad \text{bauer@tue.mpg.de}\]