Header logo is ei


2018


no image
Regularizing Reinforcement Learning with State Abstraction

Akrour, R., Veiga, F., Peters, J., Neuman, G.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018 (conference) Accepted

link (url) [BibTex]

2018

link (url) [BibTex]


no image
Learning to Categorize Bug Reports with LSTM Networks

Gondaliya, K., Peters, J., Rueckert, E.

Proceedings of the 10th International Conference on Advances in System Testing and Validation Lifecycle (VALID), pages: 7-12, October 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment

Muratore, F., Treede, F., Gienger, M., Peters, J.

2nd Annual Conference on Robot Learning (CoRL), 87, pages: 700-713, Proceedings of Machine Learning Research, PMLR, October 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement Learning of Phase Oscillators for Fast Adaptation to Moving Targets

Maeda, G., Koc, O., Morimoto, J.

Proceedings of The 2nd Conference on Robot Learning (CoRL), 87, pages: 630-640, (Editors: Aude Billard, Anca Dragan, Jan Peters, Jun Morimoto ), PMLR, October 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

RAL18final link (url) DOI [BibTex]

RAL18final link (url) DOI [BibTex]


no image
Constraint-Space Projection Direct Policy Search

Akrour, R., Peters, J., Neuman, G.

14th European Workshop on Reinforcement Learning (EWRL), October 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Spatio-temporal Transformer Network for Video Restoration

Kim, T. H., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

15th European Conference on Computer Vision (ECCV), Part III, 11207, pages: 111-127, Lecture Notes in Computer Science, (Editors: Vittorio Ferrari, Martial Hebert,Cristian Sminchisescu and Yair Weiss), Springer, September 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Separating Reflection and Transmission Images in the Wild

Wieschollek, P., Gallo, O., Gu, J., Kautz, J.

European Conference on Computer Vision (ECCV), September 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Simulation Based Online Planning

Schmid, K., Belzner, L., Kiermeier, M., Neitz, A., Phan, T., Gabor, T., Linnhoff, C.

KI 2018: Advances in Artificial Intelligence - 41st German Conference on AI, pages: 229-240, (Editors: F. Trollmann and A. Y. Turhan), Springer, Cham, September 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution

Gondal, M. W., Schölkopf, B., Hirsch, M.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), September 2018 (conference)

arXiv URL [BibTex]

arXiv URL [BibTex]


no image
From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P. K., Bongers, S., Schölkopf, B., Mooij, J. M.

Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI), August 2018 (conference)

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


no image
Generalized Score Functions for Causal Discovery

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., Glymour, C.

Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages: 1551-1560, (Editors: Yike Guo and Faisal Farooq), ACM, August 2018 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming

Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5713-5722, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Blind Justice: Fairness with Encrypted Sensitive Attributes

Kilbertus, N., Gascon, A., Kusner, M., Veale, M., Gummadi, K., Weller, A.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2635-2644, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Detecting non-causal artifacts in multivariate linear regression models

Janzing, D., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 2250-2258, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning-based solution to phase error correction in T2*-weighted GRE scans

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

1st International conference on Medical Imaging with Deep Learning (MIDL), July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
The Mirage of Action-Dependent Baselines in Reinforcement Learning

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., Levine, S.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5022-5031, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Intrinsic disentanglement: an invariance view for deep generative models

Besserve, M., Sun, R., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

PDF [BibTex]

PDF [BibTex]


Thumb xl 2018 prd
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Workshop on Theoretical Foundations and Applications of Deep Generative Models (TADGM) at the 35th International Conference on Machine Learning (ICML), July 2018 (conference)

arXiv [BibTex]

arXiv [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4448-4456, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
PET/MRI Hybrid Systems

Mannheim, G. J., Schmid, A. M., Schwenck, J., Katiyar, P., Herfert, K., Pichler, B. J., Disselhorst, J. A.

Seminars in Nuclear Medicine, 48(4):332-347, July 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Parmas, P., Rasmussen, C., Peters, J., Doya, K.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4065-4074, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4033-4041, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

PDF [BibTex]

PDF [BibTex]


no image
Hyperbolic Entailment Cones for Learning Hierarchical Embeddings

Ganea, O., Becigneul, G., Hofmann, T.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 1646-1655, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Differentially Private Database Release via Kernel Mean Embeddings

Balog, M., Tolstikhin, I., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 423-431, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
On Matching Pursuit and Coordinate Descent

Locatello, F., Raj, A., Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B., Stich, S. U., Jaggi, M.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 3204-3213, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Iterative Model-Fitting and Local Controller Optimization - Towards a Better Understanding of Convergence Properties

Wüthrich, M., Schölkopf, B.

Workshop on Prediction and Generative Modeling in Reinforcement Learning at ICML, July 2018 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

[BibTex]

[BibTex]


no image
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.

IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)

DOI [BibTex]

DOI [BibTex]


Thumb xl 2017 frvsr
Frame-Recurrent Video Super-Resolution

Sajjadi, M. S. M., Vemulapalli, R., Brown, M.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2018 (conference)

ArXiv link (url) [BibTex]

ArXiv link (url) [BibTex]


no image
Learning Face Deblurring Fast and Wide

Jin, M., Hirsch, M., Favaro, P.

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages: 745-753, June 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Wasserstein Auto-Encoders

Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Fidelity-Weighted Learning

Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives

Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Sobolev GAN

Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Pong*, V., Gu*, S., Dalal, M., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

Videos link (url) [BibTex]

Videos link (url) [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Coupled Forward-Inverse Models with Combined Prediction Errors

Koert, D., Maeda, G., Neumann, G., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Automatic Estimation of Modulation Transfer Functions

Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.

IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Group invariance principles for causal generative models

Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

DOI [BibTex]

DOI [BibTex]