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active causal structure learning for (Gaussian process networks
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Problem setting A T ———

»optimal experimental design for continuous random Assume a structural causal model (SCM) over X = { X7, ..., X}, Nonlinear functional relationships introduce additional uncertainty
variables with unknown causal structure and complicate causal discovery—even from experimental data!

_ f(PaC) 4, e; ~ N(0,02), (i=1,..,d),

» allow for non-linear functional relationships modelled
with Gaussian process priors where both G* and the (possibly) nonlinear f; are unknown. - - o
> Bayesign actiye 1eaming approach to perform maxi- Q: Which intervention do(X; = x) should we try next to learn G*? % s % o .
mally informative experiments for causal structure 5 5 ° .
- - - ® confounder
» Bayesian optimisation to efficiently maximise a Monte o / \
Carlo estimate of expected information gain Active Bayesian causal discovery - [ eonen — prenonpe - gene B phenotype
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- - Given: prior beliefs about DAGs and their associated parameters, Activity of gene A Activity of gene B
Motivation P(G)P(0c|G): likel -
a|G); likelihood function, P(D|0g, G). |
Figure from Peters et al. (2017)]
Humans learn causal models not just from large amounts Goal: maximise the information gain in G w.r.t. the expected
of observational or interventional data. Rather, we con- outcome of the experiment, subject to current beliefs. ' '
stantly interact with our environment: conducting exper- Bivariate example
iments to test hypotheses and updating our beliefs based Z P(G / x_;|G,do(X, )) log P(G\X_j, do(X; = a:))dx_j
on the outcomes — “child as a scientist” Geg .
Intervention Gi: X =Y Go:Y — X
chooses an experiment Problem: intractable due to integration over g and x_;. p(y! dof x)) plylz) p(y)
a; = do(X; = x) | | p(z|do(y)) p(x) p(z|y)
Approach: 1. Gaussian process priors over f; ~ GP(0, k;)
/\ —> predictive posterior P (X—j’Gy do(X; = x)) and marginal G, XY G, Y > X
Intrinsicaﬂy Environment: likelihood P(D’G) available in closed form i i | | | ‘ " | |
Motivated Causal Model | | (m)
Agent over X1, ... X, 2. Monte Carlo estimate using M sampled outcomes x,

M
. (m)
arg max P(G)— Y log P(G|x", do(X; =x)) (1)
\/ Je{l,..., d},xe)(j(;g Mn; ! ]

provides a sample

Dy ~ P(X_j|do(X; = x)) 3. Approximate arg max over continuous x € X in (1) using
Bayesian optimisation



