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Summary

) optimal experimental design for continuous random
variables with unknown causal structure

) allow for non-linear functional relationships modelled
with Gaussian process priors

)Bayesian active learning approach to perform maxi-
mally informative experiments for causal structure

)Bayesian optimisation to efficiently maximise a Monte
Carlo estimate of expected information gain

Motivation

Humans learn causal models not just from large amounts
of observational or interventional data. Rather, we con-
stantly interact with our environment: conducting exper-
iments to test hypotheses and updating our beliefs based
on the outcomes → “child as a scientist”.

Intrinsically
Motivated

Agent

Environment:
Causal Model
over X1, ..., Xd

chooses an experiment
at := do(Xj = x)

provides a sample
Dt ∼ P

(
X−j|do(Xj = x)

)

Problem setting

Assume a structural causal model (SCM) over X = {X1, ..., Xd},

Xi := fi(Pa
G∗

i ) + εi, εi ∼ N (0, σ2
i ), (i = 1, ..., d),

where both G∗ and the (possibly) nonlinear fi are unknown.

Q: Which intervention do(Xj = x) should we try next to learn G∗?

Active Bayesian causal discovery

Given: prior beliefs about DAGs and their associated parameters,
P (G)P (θG|G); likelihood function, P (D|θG, G).

Goal: maximise the information gain in G w.r.t. the expected
outcome of the experiment, subject to current beliefs.∑
G∈G

P (G)

∫
P
(
x−j|G, do(Xj = x)

)
logP

(
G|x−j, do(Xj = x)

)
dx−j

Problem: intractable due to integration over θG and x−j.

Approach: 1. Gaussian process priors over fi ∼ GP(0, ki)

=⇒ predictive posterior P
(
x−j|G, do(Xj = x)

)
and marginal

likelihood P (D|G) available in closed form

2. Monte Carlo estimate using M sampled outcomes x
(m)
−j

arg max
j∈{1,...,d},x∈Xj

∑
G∈G

P (G)
1

M

M∑
m=1

logP
(
G|x(m)

−j , do(Xj = x)
)

(1)

3. Approximate arg max over continuous x ∈ Xj in (1) using
Bayesian optimisation

Contrast to linear setting

Nonlinear functional relationships introduce additional uncertainty
and complicate causal discovery–even from experimental data!

[Figure from Peters et al. (2017)]

Bivariate example

Intervention G1 : X → Y G2 : Y → X

p
(
y|do(x)

)
p(y|x) p(y)

p
(
x|do(y)

)
p(x) p(x|y)

G
1

: X --> Y
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2

: Y --> X
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Posteriors over Causal Graphs

G1 : X --> Y G2 : Y --> X
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