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We explore the feasibility of using machine learning methods to obtain an analytic form of

the classical free energy functional for two model fluids, hard rods and Lennard–Jones, in

one dimension. The Equation Learning Network proposed in Ref. 1 is suitably modified to

construct free energy densities which are functions of a set of weighted densities and which

are built from a small number of basis functions with flexible combination rules. This

setup considerably enlarges the functional space used in the machine learning optimization

as compared to previous work2 where the functional is limited to a simple polynomial

form. As a result, we find a good approximation for the exact hard rod functional and

its direct correlation function. For the Lennard–Jones fluid, we let the network learn (i)

the full excess free energy functional and (ii) the excess free energy functional related to

interparticle attractions. Both functionals show a good agreement with simulated density

profiles for thermodynamic parameters inside and outside the training region.
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I. INTRODUCTION

Density functional theory (DFT) may be viewed as a great reductionist scheme for classical

and quantum many–body systems in equilibrium. The one–to–one correspondence between the

one–body density profile of particles and the one–body external potential acting on these particles

entails that a unique (free) energy functional of the one–body density contains all of the homoge-

neous and inhomogeneous equilibrium structure in a given system, and no explicit knowledge of

higher–order correlations (i.e. through the phase space distribution of classical particles or the full

many–body quantum wavefunction) is needed.

In general, the analytical form of the (free) energy functional is unknown, except for a hand-

ful of particular model systems (mostly in one dimension [1D]). In recent years, some effort has

gone into approximating (“learning”) functionals by machine learning (ML) techniques. In quan-

tum DFT, e.g., interpolating functionals generated by kernel ridge regression have been tested

for model 1D systems3,4 and also have been extended to 3D systems5. Numerically interpolated

functionals do not contain sufficient information about functional gradients, therefore both the

energy–density map and the external potential–density maps had to be learned by interpolation4.

For the 1D Hubbard model, a convolutional network functional has been learned whose numerical

functional derivative appears to be more robust6. However, these approaches hide the energy func-

tional inside an “ML black box” which does not permit much insight from a theory perspective.

For the classical case, a 1D LJ like fluid was studied with a convolutional network2 , utilizing an

established approach from liquid state theory of splitting the excess free energy functional into

a “repulsion” part and an “attraction” part F ex

att

2. The convolutional network naturally led to an

approximation of F ex

att
in terms of weighted densities ni, which are the essential building blocks

in modern classical DFT; however, the free energy density fex

att
(ni) as a function of ni had to be

prescribed as simple polynomials. An interpretable results obtained in2 was the accurate splitting

of the interaction potential in the Weeks–Chandler–Andersen (WCA) spirit7.

In this context, the question naturally arises whether ML techniques can be used to learn ana-

lytic forms of (free) energy functionals instead of “black boxes” or presumed forms. This question

is important also in a more general context: can ML algorithms contribute to theory building in

physics? In the ML community, efforts in that direction have utilized genetic algorithms to search a

space of simple basis function with multiplication and addition rules8. More recent work proposes

an equation learning network employing gradient-based optimization with simple basis functions
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and division besides multiplication/addition as combination rules1,9. An empirical principle for

the “right” formula (choose the simplest one that still predicts well, i.e. Occam’s razor) can be

built into the cost function. This principle was also successful in the history of physics in finding

analytical models with high predictive power even outside the training/observed regime. For the

DFT problem, the extrapolation power to other external potentials is an important aspect, as well

as the analytic differentiability of the free energy functional since structural information about the

fluid (pair correlations) is obtained via the direct correlation function (two functional derivatives

of the excess free energy functional). These aspects are explored below for the model cases of a

hard rod (HR) and a Lennard–Jones (LJ) fluid in 1D.

II. CLASSICAL DFT

In classical DFT10–13, the grand potential functional of 1D system is

Ω[ρ(x)] = F
id[ρ(x)]+F

ex[ρ(x)]+

∫

dx(V ext(x)−µ)ρ(x), (1)

where ρ(x) is the particle density distribution, F id is the free energy functional of the ideal gas,

F ex is the excess free energy functional (unique for a given pair potential between particles), µ is

the chemical potential and V ext is an external potential. The exact form of F id is:

βF
id =

∫

dxρ (x) [ln(ρ (x)λ )−1] (2)

with β = 1/(kBT ), T the temperature, kB Boltzmann’s constant, and λ the thermal wavelength. In

the following we set β = λ = 1.

In equilibrium, the corresponding density profile ρ eq minimizes Ω for a given µ . Thus, with

δΩ
δρ

= 0 and Eq. (2), we obtain

ρ eq = exp

(

µ −
δF ex

δρ

∣

∣

∣

∣

ρ=ρeq

−V ext

)

. (3)

All DFT solutions for test density distributions in this work are obtained by iteratively solving

Eq. (3) using the Picard method with mixing.

In this paper, we investigate the HR pair potential:

UHR(x) =











∞ if x < σ

0 otherwise

3
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as well as the LJ(–like) potential:

ULJ(x) =























∞ if x < σ

4 ǫ
[

(

σ
x

)12
−
(

σ
x

)6
]

if σ < x < 16σ

0 otherwise

with x the distance between particle centers, σ the diameter of the particles and ǫ the strength of

interaction. In the following we set σ = 1.

III. MACHINE LEARNING

A. Model

We define a machine learned excess free energy functional F ex,ML and the resulting ML output

density ρML by

ρML(x) = exp

(

µML −
δF ex,ML

δρ

∣

∣

∣

∣

ρ=ρeq

−V ext

)

. (4)

This is the equivalent of a “generative step” of a learned distribution ρML from an input distribution

ρ eq in an ML network (via weighted densities ni, see below). Here, µML is included in the training

process to facilitate convergence. In the end, µML → µ , see also Ref. 2 and SI for details. The

test density profiles shown in Figs. 2–4 are obtained by initializing with a constant value and then

iteratively minimizing the learned functional with the (physical) µ .

The network we propose, Functional Equation Learner (FEQL), is a L–layered feed–forward

network with computational units specifically designed for constructing the free energy functional

(see Fig. 1). The first layer consists of convolution kernels which compute the weighted densities

ni with the convolution kernel ωi (i = 1...nw) by

ni(x) = ρ ⊗ωi =

∫

dx′ρ(x′)ωi(x− x′) , (5)

and some of the weighted densities are multiplied by ǫ in the case of the LJ fluid. The maximum

allowed ranges of the ωi are [−4σ ,4σ ] (HR) and [−8σ ,8σ ] (LJ). Using weighted densities in-

stead of the particle density is inspired by the exact HR functional14 and fundamental measure

theory13,15. The layer 2 is a linear, all–to–all mapping of the vector (of functions) n = {ni(x)} to

the vector

z(l=1) =W (1)n (6)
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FIG. 1: Network architecture of the proposed FEQL for 10 layers (L = 9) and one neuron per

type (u = 3, v = 2) and 6 convolution (weighting) kernels (nw = 6). ǫ is the coupling strength

(equivalent to inverse temperature) in the LJ potential.

at level l = 1. The layers 3...L− 4 are a sequence of nonlinear and linear transformations. The

non-linear transformation at level l contains u unary units fI and v binary units gJ and maps z(l)(x)

(u+2v–dimensional) to the layer output y(l) (u+ v–dimensional) as:

y(l) :=
(

f1

(

z
(l)
1

)

, f2

(

z
(l)
2

)

... fu

(

z
(l)
u

)

,
(

g1

(

z
(l)
u+1,z

(l)
u+2

)

...gv

(

z
(l)
u+2v−1,z

(l)
u+2v

))

. (7)

The unary units, f1, ..., fu receive the respective component, z1, ...,zu as inputs, and each unit is

one of the following base functions indexed by I ∈ 0,1,2:

fI(zi) :=























zi if I = 0

exp(zi)−1 if I = 1

ln(zi +1) if I = 2
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The binary units, g1, ...,gv receive the remaining component, zu+1, ...,zu+2v, as input in pairs of

two, and each unit may be multiplication or division indexed by J ∈ 0,1:

gJ(zi,zi+1) :=











zi × zi+1 if J = 0

zi ÷ (zi+1 +1) if J = 1

Note that fI(0) = gJ(0,z) = 0. One may worry about divergences in division and logarithm when

z → −1. In the beginning of the training procedure, all parameters and convolution kernels are

initialized by small numbers so thus z is close to zero and there are no problems. If z is too

close to -1, the loss will change drastically; thus the network will intrinsically handle this issue.

As mentioned in Ref. 9, one could use modified division and logarithm functions and add extra

penalties. However, it turns out not to be required here.

The linear transformation from level l to l + 1 maps the (u+ v)–dimensional input y(l) to the

(u+2v)–dimensional intermediate representation z(l+1) given by

z(l+1) =W (l+1)y(l). (8)

Thus, the nw convolution kernels ω(x) in the first layer and the matrices W (l) are free parameters

that are learned during training.

The machine-learned free energy density fex,ML is a summation of the output of layer L− 4,

the functional derivative δF ex,ML

δρ
= ∑i

∂ fex,ML

∂ni
∗ωi (with F ex,ML =

∫

dx fex,ML(n) and ∗ denoting cross–

correlation) is used in the final, generative step (Eq. (4)). More details about constructing FEQL

can be found in the SI.

B. Network training

To obtain training data for ρ eq, grand canonical simulation are used in the case of LJ fluid; for

the HR fluid, Eq. (3) is directly solved, since the exact functional is known.

FEQL is fully differentiable in its free parameters θ = [W,ω] and can thus be trained using

back–propagation. We adopt the following loss function

L =
1

N

N

∑
i=1

(

α1

∫

|ρ eq

i −ρML

i |d x+α2|µ
eq

i −µML

i |

)

+λ1 ∑
i

∫

dx |ωi|+λ2 ∑
l,βγ

|W
(l)
βγ

|, (9)
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with α1 = 0.9 and α2 = 0.1. These values have been determined empirically and the exact choice

is not critical. For training we choose Adam16 with mini-batches:

θt+1 = θt +Adam

(

∂L(D(t))

∂θ
,α

)

(10)

with α the stepsize parameter (learning rate) and D(t) the data in the current mini-batch. The

choice of Adam is not critical and standard stochastic gradient descent also works.

Following Sahoo et al.9, we adopt a three–step training procedure. At the beginning, we use no

regularization (λ1 = λ2 = 0), such that parameters can vary freely and reach reasonable starting

points. In step 2, we switch on the regularization by setting λ1 and λ2 to positive finite values to

sparsify the network for obtaining a simpler functional. In step 3, we clamp small parameters with

|W
(l)
βγ

| < wth to zero. In this way we keep the sparsity introduced by the lasso17 training in step 2

but make sure unbiased parameter values are attained. In this paper we choose α = 10−2 or 10−3,

λ1 = 10−7 and wth = 0.05.

IV. RESULT

A. Hard rods

The exact equation of state (eos) for the hard rod (HR) fluid is given by the pressure P(ρ)= ρ
1−ρ

and the analytic form of F HR (Percus functional) is one of the few exactly known ones14,18.

The parameter of F ex,ML are trained using 1024 density profiles in a hard wall slit of width 32 σ

with 3 additional Gaussian potentials of random strength/width and location inside the slit and with

a range of training reservoir densities ρ0 = 0.2...0.55. We choose nw = 3 and (1,1,1,3,1) nodes for

(identity, exponential, logarithm, multiplication and division) with L = 10 layers (see Fig. 1) and

λ2 = 8 ·10−5 in Eq. (9) (results for different λ2 and arguments for an optimal choice are shown in

the SI). F ex,ML is not of the form of the Percus functional, since the convolution kernels of the latter

are Dirac delta and Heaviside step functions, which are are hard to be captured by our network.

In Fig.2, we show the eos, a density profile inside the thermodynamic training region but not

in the training data (ρ0 = 0.49) and a density profile outside the training region (ρ0 = 0.80). The

FEQL recovers the almost exact result inside the training region and also performs quite well even

outside the training region. The ML density profiles are initialized by ρ = 0.5 and then iteratively

solved using Eq. (3) with F ex = F ex,ML.
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0.5
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ρ
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0.01

∆
ρ
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0

1
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4

ρ
σ

(c)
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-0.2

0

0.2

0.4

∆
ρ
σ

FIG. 2: FEQL results for hard rods. Dark solid lines are exact solutions from F HR and blue

dashed lines are ML results. (a) eos, P(ρ). (b) density profile for ρ0 = 0.49 inside the training

region but V ext not in the training data. (c) density profile at hard wall for ρ0 = 0.80 outside the

training region. Insets in (b) and (c) show ∆ρ = ρexact −ρML.

The virial expansion

PML(ρ)≃ ρ +1.03ρ2 +0.71ρ3 +O
(

ρ4
)

(11)

of the ML eos shows moderate deviation compared to the exact one (
ρ

1−ρ = ρ +ρ2 +ρ3...). One

sees that inaccuracies in these coefficients do not necessarily mean a poor eos. Despite inaccu-

rate coefficients, the higher order terms in the learned eos combine appropriately to give a good

representation of the exact eos. This is understandable since no explicit information about virial

coefficients is incorporated into the cost function, thus the learning procedure has little incentive

to find the correct coefficients.

B. Lennard–Jones

Here, 1115 training distributions are generated with random µ and ǫ in the range of 0.5...1.5

and ln0.5... ln2, respectively, with V ext prescribed as in the hard rod case. The training data are

obtained by grand canonical Monte Carlo (GCMC) simulation.

1. Splitting between repulsions and attractions

Following liquid state theory2, we split into a contribution from repulsions and one from attrac-

tions as follows:

F
ex,ML([ρ ];ǫ) = F

HR([ρ ])+ ǫ F
ex,ML

att
([ρ ];ǫ), (12)
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∆
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ρ
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(c)
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ρ
σ

FIG. 3: FEQL results for LJ fluid with functional splitting. (a) eos P(ρ). (b) density profile for

ǫ= 1.30, µ = ln(1.27) inside the training region but V ext not in the training data. (c) density

profile at a hard wall for ǫ= 1.7, µ = ln(1.7), outside the training region. Dark solid lines are

simulation profiles and blue dashed lines are ML results. Insets in (b) and (c) show

∆ρ = ρMC −ρML.

where the factor ǫ in front of the F ex,ML

att
makes sure F ex,ML(ǫ→ 0) = F HR, and F ex,ML

att
is to be

learned by the network. In Fig. 1, the output from the layer 6 is F ex,ML

att
; we multiply the output

from the layer 8 by ǫ, add contribution from F HR, and then feed it to the layer 9. In the first layer,

we choose nw = 4, 1 kernel multiplied by ǫ and another 3 without this factor (see Fig. 1), and

(1,1,1,2,1) nodes for (identity, exponential, logarithm, multiplication and division). The training

parameter λ2 = 5 · 10−5 in Eq. (9). Results are shown in Fig. 3. The findings are similar to

the HR case with a very good match to simulation data for the eos and test distributions inside

and outside the thermodynamic training region. For a 1D system with hard–core repulsive and

finite range attractive pair potential, the pressure must be monotonically increasing for arbitrary

low temperature (high ǫ), and thus resulting no gas–liquid transition19. The corresponding ML

pressure shows no van der Waals (vdW) loop for attractions strengths up to ǫ= 4.1, this is a

qualitative step forward as compared to Ref. 2.

2. No splitting

As a further test of the capability of FEQL, we forego the splitting of the functional such that

F ex =F ex,ML. In the first layer, we choose nw = 6, 3 kernels multiplied with ǫ and another 3 without

this factor (see Fig. 1), and (1,1,1,3,1) nodes for (identity, exponential, logarithm, multiplication

and division). The training parameter λ2 = 5 ·10−5 in Eq. (9). For the training data we also include

density profiles from the HR case. In Fig. 4, we show the results. Test distributions match well
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FIG. 4: FEQL results for LJ fluid (no splitting). (a) eos P(ρ). (b) density profile for ǫ= 1.25,

µ = ln(1.15) inside the training region but V ext not in the training data. (c,d) density profile at a

hard wall for ǫ= 1.9, µ = ln(1.9) (c) and ǫ= 0, ρ0 = 0.7 (HR limit, (d)). Dark solid lines are

simulation profiles and blue dashed lines are ML results. Insets in (b) and (c) show

∆ρ = ρMC −ρML and in (d) ∆ρ = ρexact −ρML.

to simulation data both in the HR limit and the regime of higher attractions. The eos shows an

unphysical vdW loop for attractions strengths ǫ> 3.7, much higher than the upper limit of the

training data.

C. Direct correlation function

The direct correlation function (dcf) is a central object in DFT which through iterations yields

the pair corelation function (Ornstein–Zernike relation, see also Chap. 3 in Ref. 10). It is given by

the second functional derivative of F ex:

C(2)(x1,x2;ρ0) =−
βδ 2F ex

δρ(x1)δρ(x2)
, (13)
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FIG. 5: C(2)(x,ρ0) with ρ0 = 0.7 (HR) and 0.703 (LJ, ǫ= 1.85 and µ = ln(1.85)).

and it depends only on x = |x1 − x2| in the case of a homogeneous fluid with density ρ0.

As the network is only trained on the level of the first functional derivative (see Eq. 4), it is a

challenge for FEQL to capture the dcf. In Fig. 5, we show exemplary dcf’s at moderate to high

density for the exact HR functional, LJ from simulation and the corresponding ML results. The

direct correlations inside the hard core are captured very well by ML in the HR and LJ cases. Out-

side the hard core, in the HR case, the C(2) from the ML correctly shows insignificant correlation.

In the case of LJ, the contribution to C(2) from attraction is semi–quantitatively correct, with a

better result in the splitting case.

V. CONCLUSION

The adaptation of EQL9 to the classical DFT problem of finding F ex has shown satisfactory

results for the exemplary case of the 1D HR and LJ fluid. The new network FEQL is very flexible

and goes significantly beyond the polynomial ansatz used in Ref. 2. The analytic form allows for

more easily transferable output and further calculations to obtain, e.g., direct correlation functions.

An application to more realistic systems in 3D and perhaps also complex fluids such as water ap-

pears to be promising20–22. From the results of this work we conclude that the incorporation of

results from liquid state theory (separation of repulsion and attraction) is not essential here; how-

ever, it increases the reliability and trainability of the ML functional. Future work should include

information on virial or high density expansions as well as correlation functions (via test particles)

and should develop more quantitative measures for extrapolative capabilities of ML functionals.
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SUPPLEMENTARY INFORMATION

See supplementary information for more discussion about the training procedure, FEQL, µML,

comparison of Ref. 2, explicit F ex,ML, and convolution kernels ω(x),
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