
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Arash Mehrjou 1 Bernhard Schölkopf 1

Abstract
Generative adversarial networks are used to gen-
erate images but still their convergence proper-
ties are not well understood. There have been a
few studies who intended to investigate the sta-
bility properties of GANs as a dynamical system.
This paper can be seen in that direction. Among
the proposed methods for stabilizing training of
GANs, some of them modify the data distribu-
tion during the course of training. We unify these
methods under the name nonautonomous GAN
and investigate their dynamical behaviour when
the data distribution is not stationary. We provide
theoretical analysis which is supported by sim-
ple simulations along with experiments on high
dimensional datasets.

1. Introduction
Generative adversarial nets (Goodfellow et al., 2014) are
trained by optimizing an objective function over two sets of
parameters {θ, ψ}. For ease of presentation, the framework
is described as a competition between two functions, gener-
ator and discriminator who want to minimize/maximize a
mutual objective. The GAN objective in its general shape
can be written as

arg min
θ

max
ψ
L(θ, ψ) = E

p(z)
[f(Dψ(Gθ(z)))]+ (1)

E
pD(x)

[f(−Dψ(x))] (2)

Where ψ parameterizes the discriminator and θ parame-
terizes the generator. Different choices for f(.) gives var-
ious GAN objectives, e.g. Jenson-Shannon (Goodfellow
et al., 2014), Wassestein-GAN (Arjovsky et al., 2017), f-
GAN (Nowozin et al., 2016), etc. In accordance with these
works, we assume f ′(x) 6= 0. The ultimate goal is to
converge to a saddle point where neither discriminator nor

1Max Planck Institute for Intelligent Systems, Tübin-
gen, Germany. Correspondence to: Arash Mehrjou
<arash.mehrjou@tuebingen.mpg.de>.

Presented at the ICML 2018 workshop on Theoretical Foundations
and Applications of Deep Generative Models

generator can achieve a better objective when the other
one is kept fixed. Let’s call this point in the (θ, ψ) space
the favorite equilibrium. The interesting property of this
point is that Gθ(z) = pD(x) in the sense of probability
measures. Currently, people are using stochastic gradient
descent (SGD) updates to alternately perturb θ and ψ in a
hope to converge to the favorite equilibrium in the end. Even
though the results look visually promising, the dynamical
behavior of this system needs more investigation.

In this paper, we restrict ourselves to a minimal example
and try to get insight of a GAN whose target distribution is
not fixed. This strategy has been employed in a couple of
works (Arjovsky & Bottou, 2017; Sønderby et al., 2016).
Especially in β-GAN (Mehrjou et al., 2017), authors pro-
posed an annealing strategy that heats up data to a high
entropy uniform distribution. Once uniform distribution is
learned by the generator, the target distribution is cooled
towards the original data distribution. The main focus of
the current paper is studying the dynamical behaviour of
GAN when the target distribution is also dynamic. This
means that the environment of the GAN components (Gen-
erator + Discriminator) which is the data distribution is time
variant. Borrowing the terminologies from dynamical sys-
tems (Khalil, 1996), we call this setting, nonautonomous
GAN.

2. Nonautonomous GAN
Continuous dynamical system— We see GAN as a continu-
ous dynamical system. This assumption is valid when the
learning rate of Stochastic Gradient Descent (SGD) tends to
zero in optimization, i.e. ε→ 0.

Autonomous GAN —In conventional GAN training, the dy-
namical system

{
θ̇ = −∇θL(θ, ψ)

ψ̇ = ∇ψL(θ, ψ)
(3)

is an approximation of the training pattern for a tiny learning
rate. We call these dynamical systems autonomous because
the right-hand side function is not an explicit function of
time (Khalil, 1996). Given the Lipschitz continuity of the
right-hand side of Eq. 3, there exists a solution for this
system and it is unique.

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

(a) Autonomous GAN

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) β′-GAN: coupled-
dynamics

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

4

5

(c) β-GAN: decoupled-
dynamics

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

5

(d) β-GAN: decoupled-
dynamics (long T)

Figure 1. State evolution of various continuous dynamical systems
approximating the behavior of GANs when the learning rate is
small ε→ 0.(a) Normal GAN: Two-state autonomous system with
static data distribution. (b) β′-GAN: Three-state nonautonomous
system when the dynamics of data distribution is coupled with the
other states. (c) β-GAN: Three-state nonautonomous system when
the dynamics of data distribution is only governed by the annealing
process. (d) The same as (c) but with slower annealing process.

Nonautonomous GAN— The overall idea is introducing a
new state α in the GAN objective function in Eq. 2. This
state controls the data distribution. More precisely, the
objective function becomes

L(θ, ψ, α) = E
p(z)

[f(Dψ(Gθ(z)))] + E
pD(x;α)

[f(−Dψ(x))]

(4)
To study the effect of this new state, we introduce a minimal-
istic framework called tiny-GAN to analytically compute
the solution.

tiny-GAN —To have a minimal tractable GAN framework,
we set PD(x;α) = δα and Gθ(z) = δθ, meaning that, the
real data is concentrated on a single point at x = α and
the generator is only capable of generating one point at
location x = θ. The discriminator is assumed linear, i.e.
Dψ(x) = ψx. In contrast to (Mescheder, 2018), we do not
tie data to the origin and release it to occupy any location
on the real axis. After these simplifications, the objective
function of Eq. 2 becomes:

L(θ, ψ, α) = f(ψθ) + f(−ψα) (5)

and the dynamical system of training GAN in Eq. 3 is writ-
ten as {

θ̇ = −ψf ′(ψθ)
ψ̇ = θf ′(ψθ)− αrf ′(−ψαr)

(6)

In this formulation, αr is fixed and represents real data
distribution.

Many formulations of GAN can be characterized by the
dynamical system of Eq. 3 which contains only two states:
the parameters of the generator (θ) and the parameters of
the discriminator (ψ). Here we augment the state-space
equation with a new state which characterizes the proper-
ties of the data distribution pD(x;α). In harmony with the
minimalistic nature of tiny-GAN, the entire data distribution
is characterized by α here. Notice that the real data distri-
bution is not dynamic. Indeed, real data distribution is the
target point of the dynamics of α(t) and we represent it by
αr, i.e. α(t)→ αr as t→∞. Optimizing Eq. 4 when the
dynamics of α is only governed by ∇αL(θ, ψ, α) results in
trivial answers since there will be no motivation that α(t)
and θ(t) arrives at favorite equilibrium where α(∞) = αr.
To cure this issue, β-GAN suggested a full annealing strat-
egy over pD(x;α). This idea turns the dynamical system of
Eq. 3 into a time-varying (Nonautonomous) system. At this
point two branches can be thought of. In the first branch
which is also the method devised by β-GAN, α has partially
decoupled dynamics from the other states of the system. By
partially decoupled, we mean that the dynamics of α is not
affected by the dynamics of the other states of the system.
However, the dynamics of the other states may depend on
the dynamics of α. In the second branch (let’s call it β′-
GAN), α undergoes two dynamics. One is the dynamics
imposed by the GAN objective ∇αL(θ, ψ, α) which acts
by SGD updates and the other one is the annealing dynam-
ics. The first term makes the dynamics of α coupled with
the other states of the system. As proposed in β-GAN, an-
nealing steps must act with a slower timescale than SGD
iterations of the optimization. The slow partially decoupled
dynamics of α is characterized by

α(t) = (α0 − αr)e−
t
T + αr (7)

where T > 1 is a time constant that makes this dynamic
term slower than the SGD dynamics. In addition, α0 is
the initial value of α(t) that characterizes the initial distri-
bution of data pD(x;α = α0) when the annealing process
starts. The parameter αr is the target value of α(t) for which
pD(x;α = αr) becomes the real data distribution pD(x).
Therefore the state-space equation is written as follows:

θ̇ = −ψf ′(ψθ)
ψ̇ = θf ′(ψθ)− αf ′(−ψα)

α̇ = λ[−ψf ′(−ψα)] + 1
T (αr − α0)e−

t
T

(8)

The hyper-parameter λ ∈ {0, 1} is a switch and has an
important meaning which differentiate between β-GAN
and β′-GAN. When λ = 0 (β-GAN) the variable α is not
perturbed by short timescale SGD updates. This means
that α has partially decoupled dynamics from the dynamics
of states {θ, ψ}. On the other hand, when λ = 1, the
dynamics of α is governed by both a short timescale term
and a long timescale term. The former is the SGD updates

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

and the latter is the same as in β-GAN. Furthermore, β-
GAN suggests starting from uniform distribution meaning
that pD(x;α) is constant over a specified area and zero
elsewhere. In β-GAN, the generator must be pre-trained to
capture the uniform distribution for a certain data dimension
n. This means that the generator at time t = 0 is able
to generate a simple uniform distribution which matches
the initial distribution pD(x;α = α0). In our minimalistic
setting of tiny-GAN and the dynamical system of Eq.8, this
translates to θ(0) = α(0) = α0.

3. Simulations
To show the effect of annealing strategy in GANs, simple
simulations are presented here for autonomous GAN, β-
GAN and β′-GAN. Note that the objective function of Eq. 2
becomes that of W-GAN when f(y) = y (Arjovsky et al.,
2017). We compare normal (autonomous) GAN with two
Nonautonomous GANs (β-GAN and β′-GAN). Remember
that in β-GAN, data distribution does not change with short
timescale and it has its own partially decoupled dynam-
ics due to annealing while in β′-GAN, data distribution is
altered by both the fast dynamics of SGD and the slow dy-
namics of annealing. In all simulated experiments, the real
data distribution is located at x = αr = 3 which is the static
value of α for autonomous GAN but target value of α(t) for
Nonautonomous GANs. Fig. 1(a) shows the solution of the
dynamical system of Eq. 6 when f(y) = y as in Wasserstein
GAN with initial point (θ(0), ψ(0)) = (1, 2). As can be
seen, the states (θ, ψ) are oscillating around (θ∗, ψ∗)=(3, 0)
which is the equilibrium point of this system. For the linear
f(y) = y and tiny-GAN frameworks which are studied in
this paper, this result is global. It can be shown that for
nonlinear choices of f(y), the same oscillation is observ-
able but locally around the equilibrium point. Notice that
this oscillation is so called unsustained oscillation which
is different from stable limit cycles (Khalil, 1996; Isidori,
2013). Here, the amplitude of the oscillation depends on
the initial state (θ(0), ψ(0)) which is an undesirable effect.
Fig. 1(b) depicts the behavior of β′-GAN and shows the
solution to the dynamical system of Eq. 8 when λ = 1 with
initial states (θ(0), ψ(0), α(0)) = (1, 0, 1). Still the target
value for α(t) is αr = 3. As can be seen, the dynamical
system is still oscillating but the amplitude of the oscillation
is reduced. The undesirable point of this setting is that the
system is now oscillating around a wrong equilibrium point
(θ, ψ, α) = (2, 0, 2) which is different from the favorite
equilibrium (θ, ψ, α) = (3, 0, 3).

Fig. 1(c) simulates the behavior of β-GAN by running the
dynamical system of Eq. 8 with λ = 0 from the initial
states (θ(0), ψ(0), α(0)) = (1, 0, 1). Again T = 3 and
the target data is αr = 3. As can be seen, the system is
oscillating as Fig. 1(b) but this time around the correct point

(θ, ψ, α) = (3, 0, 3). The amplitude of oscillation is lower
than autonomous GAN of Fig. 1(a) and decreases more by
increasing T . Increasing T means it takes longer for α to
move from α0 to αr which is equivalent to slower annealing
dynamics or finer annealing steps in discrete setting. This is
shown in Fig. 1(d) where the entire setting is as the previous
case but T = 30 results in slower approach to ar but reduced
oscillation amplitude around the correct equilibrium point.
These empirical observations are proved in the next section
by solving GAN equations for an analytic solution.

4. Theoretical Analysis
The simulations of section 3 shows that the amplitude of
oscillation decreases as T increases in β-GAN framework.
Here, a more formal analysis is provided to explain this
observation. The dynamical system of Eq. 8 for f(y) = y
and λ = 0 will be written as follows:

θ̇ = −ψ
ψ̇ = θ − α
α̇ = 1

T (αr − α0)e−
t
T .

(9)

Let’s a = 1
T and K = (αr−α(0))

T . We take Laplace trans-
form from both sides of three equations above:

sθ(s)− θ(0) = −ψ(s)
sψ(s)− ψ(0) = θ(s)− α(s)
sα(s)− α(0) = K

s+a .
(10)

Taking derivative of the both sides of the second line of
Eq. 9 amounts to multiplying both sides of the second line
of Eq. 10 by Laplace differentiation operator s and results
in

s2ψ(s) = sθ(s)− sα(s) = ��θ(0) − ψ(s)−���α(0) − K

s+ a
(11)

where θ(0) and α(0) cancels each other due to the assump-
tion of β-GAN that generator starts from a simple initial
distribution characterized by α(0). This assumption con-
sequently ensures ψ(0) = 0 because it is assumed that the
equilibrium is initially found for both generator and discrim-
inator for the data distribution α(0). Solving for ψ(s) gives
us

ψ(s) =
−K

(1 + s2)(s+ a)
. (12)

We then expand the right-hand side as a sum of polynomial
fractions:

ψ(s) =
−K

1 + a2

s

1 + s2
+

Ka

1 + a2

1

1 + s2
+

K

1 + a2

1

s+ a
.

(13)
Computing inverse Laplace transform of ψ(s) gives

L−1{ψ(s)} =

ψ1(t)︷ ︸︸ ︷
A cos(t) +B sin(t) +Ce−at. (14)

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

where A = −K
1+a2 , B = Ka

1+a2 , and C = K
1+a2 . The last term

vanishes in the steady state solution when t→∞. We are
mainly interested in the first two parts which are responsible
for the persistent oscillation. Adding two harmonics results
in a new harmonic with scaled amplitude A and phase shift
φ: 

ψ1(t) = A sin(t+ φ)

A =
√
A2 +B2 + 2AB cos(π/2)

φ = tan−1(A,B)
(15)

where tan−1 is quadrant-aware arc tangent. By substitut-
ing A and B in A we can compute the amplitude of the
persistent oscillation as

A =

√(
K

1 + a2

)2

+

(
Ka

1 + a2

)2

=
K

1 + a2

√
(1 + a2).

(16)
The term 1 + a2 = 1 + 1

T 2 → 1 as T →∞. The important
term is K that goes to zero as T →∞ and proves our claim
(rooted in observations such as Fig. 1) that the oscillation
amplitude decreases as the annealing time T increases. Now
that the analytic form of ψ(t) is known, we can move on
and obtain the analytic form of θ(t). According to Eq.10,
we can write θ(s) in terms of ψ(s) as:

θ(s) =
1

s
[θ(0)− ψ(s)] (17)

where 1
s acts as an integrator. Therefore, we can obtain

the inverse Laplace transform L−1{θ(s)} and compute the
following definite integral to compute θ(t) as

θ(t) = θ(0)L−1{1

s
} −

∫ τ=t

τ=0

ψ(τ) dτ

= θ(0)− K

1 + a2

∫ τ=t

τ=0

e−at dτ +

∫ τ=t

τ=0

ψ1(τ) dτ

= θ(0) +
K

1 + a2

1

a
+

∫ τ=t

τ=0

ψ1(τ) dτ

= θ(0) +
αr − α0

1 + a2
+

∫ τ=t

τ=0

ψ1(τ) dτ︸ ︷︷ ︸
Ψ1(t)

. (18)

Notice that Ψ1(t) is the integral of a sinusoidal which is
itself a sinusoidal. As the annealing time increases, T →∞,
the term 1 + a2 = 1 + 1

T 2 → 1 and we eventually have the
steady state solution of θ(t) as follows:

lim
T→∞

θ(t) = ar + Ψ1(t) (19)

which shows the persistent oscillation around the desired
equilibrium point ar that is the real data distribution.

5. High dimensional example
The goal of the current paper is studying the effect of anneal-
ing in adversarial training. Hence, the goal of this section

x

15
10

5
0

5
10

15
20

y

10

5

0

5

z

25

20

15

10

5

0

5

10

15

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

20

15

10

5

0

5

10

15

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

15

10

5

0

5

10

15

τ = 1e3 τ = 2e3 τ = 1e5

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

15

10

5

0

5

10

15

x

15
10

5
0

5
10

15

y

5

0

5

10

z

15

10

5

0

5

10

15

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

15

10

5

0

5

10

15

β = 0 β = 1 β = 10
τ = 1e3 τ = 2e3 τ = 1e4

x

1.5
1.0

0.5
0.0

0.5
1.0

1.5

y

1.0

0.5

0.0

0.5

1.0

z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

15

10

5

0

5

10

15

20

x

15
10

5
0

5
10

15

y

10

5

0

5

10

z

15

10

5

0

5

10

15

β = 0 β = 1 β = 10

τ = 1e3 τ = 2e3 τ = 1e4

Figure 2. Three dimensional example — Top row: The perfor-
mance of vanilla GAN on a mixture of five Gaussian components
in three dimensions. Middle row: The performance of β-GAN on
the same dataset. Bottom row: The performance of β-GAN on the
synthesized mixture of two cubes. Blue/red dots are real/generated
data. To compare the computational cost, we report τ , which is
the total number of gradient evaluations from the start. We use
the architecture G:[z(3) | ReLU(128) | ReLU(128) | Linear(3)]
and D:[x(3) | Tanh(128) | Tanh(128) | Tanh(128) | Sigmoid(1)] for
generator and discriminator where the numbers in the parentheses
show the number of units in each layer. The annealing parameters
are [β1 = 0.1, βK = 10, K = 20].

is not comparing performance of nonautonomous GANs
with each other or other stabilizing strategies. Instead, we
want to argue that what we have shown in section 3 and
proved in section 4 can be observed in more realistic scenar-
ios. This section shows the practical results of one nonau-
tonomous GAN algorithm named β-GAN (Mehrjou et al.,
2017). Here, data distribution is controlled by a parameter
called β (that mimics the role of α in Eq. 8). The abstract
idea is categorized under the title nonautonomous GANs
that was introduced earlier in this paper. However, to be
self-contained, some of the implementation detail of the
algorithm comes in the following.

We assume the generative and discriminative networks G
and D have very large capacity, parameterized by deep neu-

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

(a) Generated samples for
β = 0.1

(b) Generated samples for
β = 1

(c) Generated samples for
β = 5

(d) Generated samples for
β =∞

Figure 3. β-GAN trained on MNIST with dim(z) = 28 × 28
— Samples generated from MNIST during annealing procedure.
The network starts from generating the uniform distribution
Uniform[−1, 1]28×28 and gradually generates samples corre-
sponding to each value of β. We use the fullly connected architec-
ture G:[z(784) | BNReLU(256) | BNReLU(256) | BNReLU(256) |
Linear(784)] and D:[x(784) | BNReLU(256) | BNReLU(512) | BN-
ReLU(512) | Sigmoid(1)] for generator and discriminator where
the numbers in the parentheses show the number of units in each
layer. BNReLU is batch normalization (Ioffe & Szegedy, 2015)
concatenated with ReLU activation. The annealing parameters are
[β1 = 0.1, βK = 10, K = 20] the same as 3D experiment in
Fig. 2.

ral networks G(z; θG) and D(x; θD). Here, z ∼ p(z) is
the (noise) input to the generative network G(z; θG), and
D(x; θD) is the discriminative network that is performing
logistic regression. The discriminative network is trained
with the binary classification labels D = 1 for the N
observations {x(1), x(2), · · · , x(N)} ∈ Rd, and D = 0
otherwise. The GAN objective is to find θ∗G such that
G(z; θ∗G) ∼ pdata(x). This is achieved at the Nash equi-
librium (favorite equilibrium) of the following minimax
objective:

θ∗G = arg min
θG

max
θD

f(θD, θG),

f(θD, θG) = E
x∼pdata

log (D(x; θD)) +

E
z∼p(z)

log(1−D(G(z; θG); θD)),

(20)

where at the equilibrium D(G(z; θ∗G); θ∗D) = 1/2 (Good-
fellow et al., 2014). One way to introduce β is to go back

(a) Generated samples for
β = 0.1

(b) Generated samples for
β = 1

(c) Generated samples for
β = 5

(d) Generated samples for
β =∞

Figure 4. β-GAN trained on CelebA with dim(z) = 64× 64× 3
— Samples generated from CelebA dataset during annealing proce-
dure. The network starts from generating the uniform distribution
Uniform[−1, 1]64×64×3 and gradually generates samples corre-
sponding to each value of β. We borrowed DCGAN architecture
from (Radford et al., 2015) except that the input noise of the
generative network has the dimension of data and the output layer
is changed to linear instead of Tanh. The annealing parameters are
[β1 = 0.1, βK = 10, K = 20] the same as 3D experiment in
Fig. 2.

to the empirical distribution and rewrite it as a mixture of
Gaussians with zero widths:

pdata(x) =
1

N

∑
i

δ(x− x(i))

=
1

N
lim
β→∞

√
β

2π

∑
i

exp

(
−β(x− x(i))2

2

)
.

The heated data distribution at finite β is therefore given by:

pdata(x;β) =
1

N

(
β

2π

)d/2∑
i

exp

(
−β(x− x(i))2

2

)
.

The d-dimensional box— The starting point in β-GAN is
to learn to sample from the uniform distribution. Since the
uniform distribution is not normalized inRd, we set X to be
the finite interval [a, b]d. The uniform distribution sets the
scale in our framework, and the samples xβ ∼ pdata(x;β)
are rescaled to the same interval. This hard d-dimensional
“box” for the data “particles” is thus assumed throughout the

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Algorithm 1 Minibatch stochastic gradient descent training of annealed generative adversarial networks. The inner loop can be replaced
with other GAN architectures and/or other divergence measures. The one below uses the Jensen-Shannon formulation of Goodfellow et al.
as the objective, as are other experiments in this paper.

• Train GAN to generate uniform distribution and obtain θ∗g,0 and θ∗d,0.
• Receive β1, βK , and K, where K is the number of cooling steps between/including β1 and βK .
• Compute α > 1 as the geometric cooling factor:

α =

(
βK
β1

) 1
K

• Initialize β: β ← β1

• Initilize θg,β ← θ∗g,0 and θd,β ← θ∗d,0
for number of cooling steps (K) do

for number of training steps (n) do
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution pdata(x;β).
• Update the discriminator by ascending its stochastic gradient:

∇θd,β
1

m

m∑
i=1

[
logD

(
x(i); θd,β

)
+ log

(
1−D

(
G
(
z(i); θg,β

)
; θd,β

))]
.

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
• Update the generator by descending its stochastic gradient:

∇θg,β
1

m

m∑
i=1

log
(

1−D
(
G
(
z(i); θg,β

)
; θd,β

))
.

end for
• Increase β geometrically: β ← β ∗ α

end for
• Switch from pdata(x;βK) to the empirical distribution (β =∞) for the final epochs.

paper. Its presence is conceptually equivalent to a diffusion
process of the data particles in the box [a, b]d, where they
diffuse to the uniform distribution like ink dropped in wa-
ter (Sohl-Dickstein et al., 2015). Here, the distribution is
parameterized with β instead of the diffusion time. We also
mention a non-Gaussian path to the uniform distribution in
the discussion section.

With this setup, the minimax optimization task at each β is:

θ∗G(β) = arg minθG maxθD f(θD, θG;β),

f(θD, θG;β) = Ex∼pdata(x;β) log (D(x; θD)) + (21)
Ez∼p(z) log(1−D(G(z; θG); θD)).

Note that the optimal parameters θ∗G and θ∗D depend on β
implicitly. In β-GAN, the first task is to learn to sample
from the uniform distribution. It is then trained simultane-
ously as the uniform distribution is smoothly annealed to the
empirical distribution by increasing β. We chose a simple
fixed geometric scheduling for annealing in this work. The
procedure is given in Algorithm 1.

The convergence of the algorithm is based on the following
conjecture:

In the continuous annealing limit from the uniform distri-
bution to the data distribution GAN remains stable at the
equilibrium, assuming G and D have large capacity and
that they are initialized at the minimax equilibrium for gen-
erating the uniform distribution1 in the ambient space X .

This conjecture is proved for a simplistic setting in section 4.
Implemented algorithm is then tested on various datasets
whose results are depicted in Fig. 2 (synthetic data), Fig. 3
(MNIST), and Fig.4 (CelebA). The annealing strategy re-
sults in better stability in the sense that the generator passes
a path towards the target distribution with ever increasing
quality of generated images, without forgetting the learned
information abruptly , and with less amplitude of oscillation
around the equilibrium point. Investigating oscillations in
the parameter space as discussed in section. 4 and depicted

1This requires dim(z) ≥ d.

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

100 150 200 250 300 350 400 450 500
#Annealing epoch

5

10

15

20

25

30

35

A
ve

ra
ge

 O
sc

ill
at

io
ns

 o
f F

ID
MNIST
CelebA

Figure 5. Average ampliude of oscillations of FID around the equi-
librium point for different numbers of annealing steps. When the
annealing schedule is finer (higher number of annealing steps), the
FID shows oscilations with lower amplitude.

in Fig. 3 for tiny-GAN is not easily possible in higher dimen-
sions for complex discriminators and generators. However,
we used an indirect strategy to observe this effect. We took
FID score (Heusel et al., 2017) as a performance metric
for the generator and monitored its value over the course
of training. FID is computed between two batches of sam-
ples generated from PD(x;α) and Pdata(x). We computed
the FID score for every 100 iterations that gives a highly
noisy curve. To extract the trend, we passed the FID curve
through a low-pass filter. We observed the resultant curves
and found the knee point after which the oscillations occur
on a horizontal line. For a period of 50k iterations in this re-
gion we computed the average max-to-min amplitude. This
procedure was repeated for different number of annealing
steps (higher number of steps amounts to finer annealing
schedule) and the result is depicted in Fig. 5. This result
indirectly confirms our theoretical analysis in the simplistic
scenario of section 4 that longer period of annealing results
in oscillations with less amplitude. However, since oscilla-
tion in the parameter space is not tractably measurable for
millions of parameters, we looked at the oscillations in the
FID score that indirectly shows an oscillating behaviour in
the generator.

6. Conclusion
This paper uses simulations and theoretical analysis to study
annealing as a promising approach in GANs. The dynamics
of two frameworks called β-GAN and β′-GAN are studied
and showed that while annealing with partially decoupled
dynamics (β-GAN) results in reduced oscillation, annealing
with coupled dynamics can result in convergence to a wrong
equilibrium. A minimalistic nonautonomous adversarial
dynamical system called tiny-GAN is proposed to mimic
the behavior of GAN in a tractable way when its data distri-
bution is nonstationary. The optimization updates and the

dynamics of the annealing strategy is approximated by a
continuous dynamical system. We believe viewing adver-
sarial strategies as dynamical systems are interesting not
only in unsupervised learning, but also in control theory
where compelling systems may arise when states act in an
adversarial way.

ACKNOWLEDGEMENTS

AM acknowledges comments by Saeed Saremi on the
manuscript and valuable ideas on the body of the work.

References
Arjovsky, M. and Bottou, L. Towards principled methods for

training generative adversarial networks. arXiv preprint
arXiv:1701.04862, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
Klambauer, G., and Hochreiter, S. Gans trained by a
two time-scale update rule converge to a nash equilib-
rium. arXiv preprint arXiv:1706.08500, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Isidori, A. Nonlinear control systems. Springer Science &
Business Media, 2013.

Khalil, H. K. Noninear systems. Prentice-Hall, New Jersey,
2(5):5–1, 1996.

Mehrjou, A., Schölkopf, B., and Saremi, S. An-
nealed generative adversarial networks. arXiv preprint
arXiv:1705.07505, 2017.

Mescheder, L. On the convergence properties of gan training.
arXiv preprint arXiv:1801.04406, 2018.

Nowozin, S., Cseke, B., and Tomioka, R. f-gan: Training
generative neural samplers using variational divergence
minimization. In Advances in Neural Information Pro-
cessing Systems, pp. 271–279, 2016.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequilib-
rium thermodynamics. arXiv preprint arXiv:1503.03585,
2015.

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and
Huszár, F. Amortised map inference for image super-
resolution. arXiv preprint arXiv:1610.04490, 2016.

