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We introduce groupICA, a novel independent component analysis (ICA) algo-
rithm which decomposes linearly mixed multivariate observations into independent
components that are corrupted (and rendered dependent) by hidden group-wise
confounding. It extends the ordinary ICA model in a theoretically sound and ex-
plicit way to incorporate group-wise (or environment-wise) structure in data and
hence provides a justified alternative to the use of ICA on data blindly pooled
across groups. In addition to our theoretical framework, we explain its causal in-
terpretation and motivation, provide an efficient estimation procedure and prove
identifiability of the unmixing matrix under mild assumptions. Finally, we illus-
trate the performance and robustness of our method on simulated data and run
experiments on publicly available EEG datasets demonstrating the applicability to
real-world scenarios. We provide a scikit-learn compatible pip-installable Python
package groupICA as well as R and Matlab implementations accompanied by a
documentation and an audible example at https://sweichwald.de/groupICA.

1. Introduction

The analysis of multivariate data is often complicated by high dimensionality and complex
inter-dependences between the observed variables. In order to identify patterns in such data
it is therefore desirable and often necessary to reduce the dimensionality and separate differ-
ent aspects of the data. In multivariate statistics, for example, principal component analysis
(PCA) is a common preprocessing step that decomposes the data into orthogonal principle
components which are sorted according to how much variance of the original data each com-
ponent explains. There are two important applications of this. Firstly, one can reduce the
dimensionality of the data by projecting it onto the lower dimensional space spanned by the
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leading principal components which maximize the explained variance. Secondly, since the
principle components are orthogonal, they separate in some sense different (uncorrelated)
parts of the data. In many situations this enables a better interpretation and representation.

Often, however, PCA may not be sufficient to separate the data in a desirable way due to
more complex inter-dependences in the multivariate data (see e.g., Section 1.3.3 in Hyväri-
nen et al. (2001) for an instructive example). This observation motivates the development of
independent component analysis (ICA), formally introduced in its current form by Cardoso
(1989) and Comon (1994). ICA is a widely used unsupervised blind source separation tech-
nique that aims at decomposing an observed linear mixture of independent source signals.
More precisely, assuming that the observed data is a linear mixture of underlying indepen-
dent variables, one seeks the unmixing matrix that maximizes the independence between the
signals it extracts. There has been a large amount of research into different types of ICA pro-
cedures and their interpretations, e.g., Bell and Sejnowski (1995, Infomax) who maximize the
entropy, Hyvärinen (1999, FastICA) who maximizes the kurtosis or Belouchrani et al. (1997,
SOBI) who minimize time-lagged dependences, to name only three of the more widespread
examples.

ICA has applications in many fields, for example in finance (e.g., Back and Weigend, 1997),
the study of functional magnetic resonance imaging data (e.g., McKeown et al., 1998a,b;
Calhoun et al., 2003), and notably in the analysis of electroencephalography (EEG) data
(e.g., Makeig et al., 1996, 1997; Delorme and Makeig, 2004). The latter is motivated by the
common assumption that the signals recorded at EEG electrodes are a (linear) superposition
of cortical dipole signals (Nunez and Srinivasan, 2006). Indeed, ICA-based preprocessing has
become the de facto standard for the analysis of EEG data where the extracted components
are interpreted as corresponding to cortical sources (e.g., Ghahremani et al., 1996; Zhukov
et al., 2000; Makeig et al., 2002) or used for artifact removal by dropping components that
are dominated by ocular or muscular activity (e.g., Jung et al., 2000; Delorme et al., 2007).

In many applications, the data at hand is heterogeneous and often parts of the samples
can be grouped by the different settings (or environments) under which the observations were
taken, e.g., we can group those samples of a multi-subject EEG recording that belong to the
same subject. For the analysis and interpretation of such data across different groups, it is
desirable to extract one set of common features or signals instead of obtaining individual ICA
decompositions for each group. In practice, whenever such situations arise, the common and
tempting solution is to simply pool the data across groups and run an ICA algorithm on all
data whereby the group structure is ignored.

Here, we present a novel, methodologically sound framework that extends the ordinary
ICA, respects the group structure and accounts for group-wise confounding. More precisely,
we consider a model of the form

Xi = A · (Si +Hi),

where A remains fixed across different groups, Si is a vector of independent source signals and
Hi is a vector of confounding variables with fixed covariance within each group. Based on
this extension to ordinary ICA, we construct a method and an easy to implement algorithm
to extract one common set of sources that are stable across the different groups and can be
used for across-group analyses.
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1.1. Contributions and relation to existing work

ICA is extremely well-studied with a tremendous amount of research related to various types
of extensions and relaxations of the ordinary ICA model. In light of this, it is important to
understand where our proposed procedure is positioned and why it is an interesting and useful
extension. ICA research can be categorized and systematized according to different criteria.
The first is related to the type of assumptions under which the ICA model is identifiable:
roughly speaking, there is one group of non-Gaussianity- and one of non-stationarity-based
methods. Many methods for model identification under the respective assumptions have been
developed (e.g., Cardoso and Souloumiac, 1993; Bell and Sejnowski, 1995; Belouchrani et al.,
1997; Hyvärinen, 1999; Pham and Cardoso, 2001). Our groupICA falls in the category of
non-stationarity-based methods such as the methods by Matsuoka et al. (1995); Pham and
Cardoso (2001); Hyvärinen (2001) and likewise relies on whitening covariance matrices across
time. A second criterion to categorize ICA research is to separate different extensions of the
underlying model. Some of the most prominent extensions are noisy ICA (e.g., Moulines
et al., 1997), overcomplete ICA (e.g., Lewicki and Sejnowski, 1997), independent subspace
analysis (Hyvärinen and Hoyer, 2000) and topographic ICA (Hyvärinen et al., 2001). The
groupICA procedure has connections to several of these extensions which we discuss in more
detail in Section 3.2.

Apart from this more general positioning within the ICA literature, our methodology is
aimed at a more specific setting: data with a group structure. While such applications
frequently arise in practice (e.g., multi-subject EEG/fMRI studies), theoretical results are
still scarce. ICA does not naturally generalize to a method suitable to extract components
that are robust across groups. In an attempt to overcome this limitation, groups are often
simply pooled together and an ICA is performed on the concatenated data, which is the
default behavior in toolboxes like the widely used eeglab for EEG analyses (Delorme and
Makeig, 2004). Pooling routines like this, however, ignore any group structure and are prone
to distortions resulting from variations across groups, as also illustrated in our simulations
in Section 4.3. Often one can remedy some of these problems using clever normalization or
denoising techniques to preprocess the data. Indeed, most existing approaches for grouped
data involve some level of engineering and are hence no longer based on explicit statistical
models. They are rather a combination of several preprocessing, normalization, concatenation
and analysis steps (cf. Guo and Pagnoni (2008); Calhoun et al. (2009) for an overview). One
frequently used example is the method introduced by Calhoun et al. (2001), which first whitens
and projects the grouped data by PCA (thus performing a normalization within groups)
followed by pooling the data and running an ordinary ICA algorithm on the concatenated
data. Another technique is tensorial ICA due to Beckmann and Smith (2005) who add an
extra dimension to their data to incorporate the groups and propose a three dimensional ICA
procedure which learns a joint model of related decompositions for each group.

One strength of our methodology is that it explicitly fixes a statistical model that is sensible
for data with group structure and can be estimated efficiently, while being backed by provable
identification results. Furthermore, providing an explicit model with all required assumptions
enables a constructive discussion about the appropriateness of such modeling decisions in
specific application scenarios. The model itself is based on a notion of invariance that is
robust against confounding structures from groups: this idea is also related to invariance
ideas in causality (Haavelmo, 1944; Peters et al., 2016), see also the relation to causality
which we discuss in Section 3.3.
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We believe that groupICA is a valuable contribution to the ICA literature in the following
ways:

• We introduce a methodologically sound framework which extends ordinary ICA to set-
tings with grouped data.

• We prove identifiability of the unmixing matrix under mild assumptions.

• We provide an easy to implement estimation procedure.

• We illustrate the usefulness, robustness, applicability, and limitations of our newly intro-
duced groupICA algorithm as well as characterize the advantage of groupICA over pooled
ICA: the source separation by groupICA is more stable across groups since it explicitly
accounts for group-wise confounding instead of pooling the data across groups.

• We propose a way to rank the recovered components according to their stability.

• We provide an open-source scikit-learn compatible ready-to-use Python implementation
available as groupICA from the Python Package Index repository as well as R and
Matlab implementations and an intuitive audible example which is available at https:
//sweichwald.de/groupICA.

2. Methodology

For the model description, let Si = (S1
i , . . . , S

d
i )> ∈ Rd×1 and Hi = (H1

i , . . . ,H
d
i )> ∈ Rd×1

for i ∈ {1, . . . , n} be two independent vector-valued sequences of random variables. The
components S1

i , . . . , S
d
i are assumed to be mutually independent at all points i while there

are no further constraints on H. Moreover, let A ∈ Rd×d be an invertible matrix. The
d-dimensional data process (Xi)i∈{1,...,n} is generated by the following model

Xi = A · (Si +Hi), for all i ∈ {1, . . . , n}. (2.1)

That is, X is a linear combination of source signals S and confounding variables H. In this
model, both S and H are unobserved and one aims at recovering the pure source signals S.
Without additional assumptions, however, this is impossible as there is no way to distinguish
between the confounding H and the source signals S and even with additional assumptions it
remains a difficult task (see Section 3.2 for an overview of related existing ICA models). Here,
we aim at solving the problem of only recovering the confounded source signals S̃i = Si +Hi.

Throughout this paper we denote by X = (X1, . . . , Xn) ∈ Rd×n the observed data ma-
trix and similarly by S and H the corresponding (unobserved) source and confounding data
matrices. For a finite data sample generated by this model we hence have

X = A · (S + H).

In order to distinguish between the confounding H and the source signals S we need to
assume that the two processes are sufficiently different. This can be achieved by assuming
the existence of a group structure such that the covariance of the confounding H remains
invariant within a group and only changes across groups.
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Assumption 1 (group-wise confounding)
There exists a collection of m disjoint groups G = {g1, . . . , gm} with gk ⊆ {1, . . . , n} and
∪mk=1gk = {1, . . . , n}, such that for all g ∈ G and for all i ∈ g it holds that

Cov(Hi) ≡ ΣH,g.

Under this assumption and given that the source signals change enough within groups,
the mixing matrix A is identifiable, see Section 2.1. Similar to existing ICA methods, our
approach to estimate the mixing matrix A is based on shifts in second moments of the source
signals S (e.g., Matsuoka et al., 1995; Pham and Cardoso, 2001; Hyvärinen, 2001). In contrast
to these existing methods, we also adjust for the confounding H.

For V = A−1 and using (2.1) it holds for all i ∈ {1, . . . , n} that

V Cov(Xi)V
> = Cov(Si) + Cov(Hi).

Since the source signal components Sj
i are mutually independent, the covariance matrix

Cov(Si) is diagonal. Moreover, due to Assumption 1 the covariance matrix of the confounding
H is constant within each group. This implies for all groups g ∈ G and for all k, l ∈ g that

V (Cov(Xk)− Cov(Xl))V
> = Cov(Sk)− Cov(Sl) (2.2)

is a diagonal matrix. We can therefore identify V by simultaneously diagonalizing differences
of covariance matrices as in (2.2). This process of finding a matrix V that simultaneously
diagonalizes a set of matrices is known as joint matrix diagonalization and has been studied
extensively (e.g., Ziehe et al., 2004; Tichavsky and Yeredor, 2009). In Section 2.2, we show
how to construct an estimator for V based on approximate joint matrix diagonalization.

2.1. Identifiability and theoretical properties

Identifiability requires that the source signals S change sufficiently strong within groups. We
prove identifiability under the following mild assumption that characterizes “how much” the
source signals change.

Assumption 2 (non-stationary, independently changing second moments)
For each pair of components p, q ∈ {1, . . . , d} we require the existence of three (not necessarily
unique) groups g1, g2, g3 ∈ G and three corresponding pairs l1, k1 ∈ g1, l2, k2 ∈ g2 and l3, k3 ∈
g3 such that the two vectors

Var
(
Sp
l1

)
−Var

(
Sp
k1

)
Var

(
Sp
l2

)
−Var

(
Sp
k2

)
Var

(
Sp
l3

)
−Var

(
Sp
k3

)
 and


Var

(
Sq
l1

)
−Var

(
Sq
k1

)
Var

(
Sq
l2

)
−Var

(
Sq
k2

)
Var

(
Sq
l3

)
−Var

(
Sq
k3

)


are not collinear and not equal to zero.

This assumption can be interpreted as requiring the individual components to have pair-
wise independently changing variance processes. Based on this assumption, it is possible to
show that the mixing matrix A is uniquely identifiable.

Theorem 2.1 (identifiability of the mixing matrix)
Assume the data process (Xi)i∈{1,...,n} satisfies the model in (2.1) and additionally Assump-
tion 1 and Assumption 2 are satisfied. Then A is unique up to permutation and rescaling of
its columns.

Proof A proof is given in Appendix A. �
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2.2. Estimation

In order to estimate V from a finite observed sample X ∈ Rd×n we first partition each group
into subgroups. Then, we compute the empirical covariance matrices on each subgroup.
Finally, using an approximate joint matrix diagonalization technique, we estimate a matrix
that simultaneously diagonalizes the differences of these empirical covariance matrices.

To make this more precise, for each group g ∈ G we first construct a partition Pg consisting
of subsets of g such that each e ∈ Pg satisfies that e ⊆ g and ∪e∈Pge = g. This partition Pg
should be granular enough to capture the changes in the signals described in Assumption 2.
We propose partitioning each group based on a grid such that the separation between grid
points is large enough for a reasonable estimation of the covariance matrix and at the same
time small enough to capture the variations in the signals. In our experiments, we observed
robustness with respect to the exact choice and that only extreme values should be avoided
(cf. Section 4.4.1).

Next, for each group g ∈ G and each pair e, f ∈ Pg, we define the matrix

Mg
e,f := Ĉov(Xe)− Ĉov(Xf ),

where Ĉov(·) denotes the empirical covariance matrix and Xe is the data matrix restricted to
the columns corresponding to the subgroup e. From (2.2) it follows that VMg

e,fV
> should be

approximately diagonal. We are therefore interested in finding an invertible matrix V which
approximately jointly diagonalizes all the matrices in the set

Mall :=
{
Mg

e,f

∣∣ g ∈ G and e, f ∈ Pg
}
. (2.3)

The number of matrices in this set grows quadratically in the number of partitions. In
practice, this can lead to large numbers of matrices to be diagonalized. Another option that
reduces the computational load is to compare each partition to its complement, which leads
to the following collection of matrices

Mcomp :=
{
Mg

e,ē

∣∣ g ∈ G and e ∈ Pg (with ē := g \ e)
}
. (2.4)

The task of jointly diagonalizing a set of matrices is a well-studied topic in the literature
and is referred to as approximate joint matrix diagonalization. Many solutions have been
proposed for different assumptions made on the matrices to be diagonalized. In this paper
we use the uwedge algorithm1 introduced by Tichavsky and Yeredor (2009). The basic idea
behind uwedge is to find a minimizer of a proxy for the following loss function

`(V ) =
∑

M∈M∗

∑
k 6=l

[
VMV >

]2
k,l

 ,

over the set of invertible matrices, where M∗ ∈ {Mall,Mcomp} (cf. (2.3) and (2.4)).
The full estimation procedure based on the set Mcomp defined in (2.4) is made explicit in

the pseudo code in Algorithm 1 (where ApproximateJointDiagonalizer stands for a general
approximate joint diagonalizer, e.g., uwedge).

1As a byproduct of our work, we are able to provide a new stable open-source Python/R/Matlab implemen-
tation of the uwedge algorithm which is also included in our respective groupICA packages.
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Algorithm 1: groupICA

input : data matrix X
group index G
group-wise partition (Pg)g∈G (user selected)

initialize empty list M
for g ∈ G do

for e ∈ Pg do

append Ĉov(Xe)− Ĉov(Xē) to list M
end

end

V̂ ← ApproximateJointDiagonalizer(M)
Ŝ← V̂X
output: unmixing matrix V̂

sources Ŝ

3. Stability, related ICA models and a causal perspective

A key aspect of our model is that, given the existence of a group structure, it aims to improve
the stability of the unmixing across these groups. Here, we refer to the following notion of
stability: if we estimate unmixing matrices on two different groups we want the two unmixing
matrices to be the same in the sense that both extract the same set of sources. Given that
the data generating process is truly given by our confounded ICA model in (2.1) a standard
ICA method is not able to estimate the correct unmixing V = A−1. Hence, it extracts
different mixtures of sources and confounding across different groups and is not stable in the
aforementioned sense. This is illustrated by the “America’s Got Talent Duet Problem” (cf.
Example 3.1), an extension and alteration of the classical “cocktail party problem”.

Example 3.1 (America’s Got Talent Duet Problem)
Consider the problem of evaluating two singers at a duet audition individually. This requires to
somehow listen to the two voices separately, while the singers perform simultaneously. There
are two sound sources in the audition room (the two singers) and additionally several noise
sources which corrupt the recordings at the two microphones (or the jury member’s two ears).
A schematic of such a setting is illustrated in Figure 1. The additional noise comes from an
audience and two open windows. One can assume that this noise satisfies our Assumption 1
on a single group. The sound stemming from the audience can be seen as an average of many
little sounds, hence remaining approximately constant over time. Also typical sounds from
an open window often satisfy this assumption, for example think of sound from a river or a
busy road. Our methodology, however, also allows for more complicated settings in which the
noise shifts at known points in times, for example if someone opens or closes a window or
starts mowing the lawn outside. In such cases we use the known time blocks of constant noise
as groups and apply groupICA on this grouped data. An example with artificial sound data
related to this setting is available at https: // sweichwald. de/ groupICA , where we show
that groupICA is able to recover useful sound signals, while ICA on pooled data fails to unmix
the two singers.
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Singer 1

Singer 2

Mic 1

Mic 2

Audience

Window 1

Window 2

Figure 1. Schematic of the “America’s Got Talent Duet Problem” described in Example 3.1.
The sound from the windows and audience is taken to be confounding noise which
has fixed covariance structure over given time blocks. The challenge is to recover
the sound signals from the individual singers given the recordings of the two micro-
phones.

3.1. Ranking recovered sources by stability

The ordering of the independent components in ICA is not identifiable since there is no
natural ordering between them. For practical purposes, however, it is often useful to rank
the components in some meaningful way. One common option, is to proceed similar to PCA
and rank components by their explained variance, i.e., the amount of variance in the observed
data that can be explained by each component. Such a ranking can be misleading, especially
when the observations are corrupted by confounding noise, as it only takes into account the
strength of the signal. We propose a different type of ranking which builds upon the ICA or
groupICA model and ranks the recovered components by their stability across observations.

To this end, let A = (a1, . . . , ad) ∈ Rd×d be the mixing and V = (v1, . . . , vd)> ∈ Rd×d the
corresponding unmixing matrix (i.e., V = A−1, ai are columns of A and vi are rows of V ).
Then it holds that,

Cov(Xi)v
>
j = A[Cov(Si) + Cov(Hi)]A

>v>j

= A[Cov(Si) + Cov(Hi)]e
>
j

= ACov(Si)ej +ACov(Hi)e
>
j (3.1)

Under our group-wise confounding assumption (Assumption 1) this implies that within all
groups g ∈ G, it holds for all l, k ∈ g that

(Cov(Xl)− Cov(Xk)) v>j = aj

(
Var(Sj

l )−Var(Sj
k)
)
. (3.2)

This reflects the contribution of the j-th recovered source Sj (in terms of differences) to the
variance of each component of the original multivariate data X. While in the population case
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the equality in (3.2) is satisfied exactly this is no longer the case when empirically estimating
the mixing (and unmixing) matrix. Consider for example two subsets e, f ∈ g for some group
g ∈ G, then using the notation from Section 2.2 and denoting by v̂j and âj the estimated
counterparts of vj and aj , respectively, it holds that

Mg
e,f v̂

>
j =

[
Ĉov(Xe)− Ĉov(Xf )

]
v̂>j

= Â
[
Ĉov(Ŝe)− Ĉov(Ŝf )

]
Â>v̂>j

= Â
[
Ĉov(Ŝe)− Ĉov(Ŝf )

]︸ ︷︷ ︸
≈Id(Var(Se)−Var(Sf ))

e>j , (3.3)

where the approximation only holds if our groupICA procedure is able to correctly unmix the
j-th source. The extent to which this approximation holds for different components across
various subsets e, f gives a natural measure of how stable each component is recovered. In
particular, it allows us to construct an intuitive ranking of recovered components by comparing
how well âj correlates with the terms Mg

e,f v̂
>
j .

More precisely, for each recovered source we compute its stability by

pj :=
1

|M∗|
∑

M∈M∗

∣∣∣Ĉorr
(
Mv̂>j , âj

)∣∣∣
where Ĉorr(·, ·) denotes the empirical correlation coefficient and M∗ ∈ {Mall,Mcomp} (cf.
(2.3) and (2.4)). Based on these stabilities p1, . . . , pd we then rank the components from
most stable to least stable. Interestingly, this ranking has a direct connection to stability of
topographic maps in EEG experiments, which we explain in more detail in Section 4.4.3.

Such a stability ranking is of course by no means restricted to the groupICA model. In fact,
a similar idea can be used in the ordinary ICA model where, due to the lack of confounding,
it holds that

Cov(Xi)v
>
j = aj Var(Sj

i ), (3.4)

which can similarly be utilized for a corresponding stability ranking of the components.

3.2. Relation to existing ICA methods

It is informative to understand our groupICA model (2.1) in relation to three commonly used
ICA models in the literature: ordinary, overcomplete and noisy ICA.

The ordinary ICA model assumes that the observed process X is a linear mixture of inde-
pendent source signals S without a confounding term H. Identifiability of the source signals
S is then guaranteed by assumptions on S as for example, non-Gaussianity or specific time
structures. One problem with the ordinary ICA model is that it requires at least as many
observed signals as there are source signals. In practice, this assumption is often violated
since the underlying data generating process consists of many more independent variables
than are observed (or measured).

Overcomplete ICA (e.g., Lewicki and Sejnowski, 1997) extends the ordinary ICA model to
these settings. The key difficulty in this extension is that the mixing and unmixing matrices
become non-identifiable, as one is essentially interested in solving an underdetermined system
of linear equations. Therefore, existing solutions to this problem generally add additional
assumptions, e.g., assuming that at most as many source signals are active at the same time
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as observed signals exists (see Lee et al., 1999). By considering the confounding terms H in
our model (2.1) as additional source signals our model can be seen as an overcomplete ICA
model, i.e., more source signals than observed signals. Hence, our model allows to solve the
overcomplete ICA model by separating out the true (or interesting) signals from the group-
wise constant sources that are viewed as confounding in our model. The drawback being that
the obtained sources are still “contaminated” by the confounding.

A further related ICA model is known as noisy ICA (e.g., Moulines et al., 1997) in which
the data generating process is assumed to be an ordinary ICA model with additive noise.
Similarly, as in the overcomplete ICA model this leads to identifiability issues, which in this
setting are generally resolved by assuming that the additive noise is Gaussian, hence allowing
a separation of the true (non-Gaussian) sources S from the noise. Once again this is closely
related to our groupICA model in the sense that our confounding term H is also additive
noise. The difference is that we assume that the noise remains constant across groups while
circumventing distributional assumptions on the sources (non-Gaussian) and noise (Gaussian)
as is necessary in noisy ICA.

3.3. Causal interpretation

There is a strong connection between ICA and the problem of identifying structural causal
models (SCMs) introduced by Pearl (2009). Shimizu et al. (2006) were the first to make use
of this connection by using ICA to infer causal structures. To make this more precise consider
the following linear SCM

X = B ·X + ε. (3.5)

Assuming that the matrix Id−B is invertible, we can rewrite this equation as

X = (Id−B)−1ε,

which corresponds to the underlying linear ICA model with mixing matrix A = (Id−B)−1

and source signals S = ε. Instead of taking the noise term ε as independent noise sources one
can also consider ε = S+H. Then, the linear SCM in (3.5) describes a causal model between
the X variables containing hidden confounding. This is illustrated in Figure 2, which depicts
a 3 variable SCM with feedback loops and confounding. Since the sources have inherently
unidentifiable scale and permutation it is, in general, not straight forward to recover the
causal effect matrix B from the mixing matrix A. This is only possible under additional
restrictions on the causal structure, for example by restricting to acyclic graphs as in Shimizu
et al. (2006) or by restricting the types of allowed feedback loops as in Hoyer et al. (2008)
and Rothenhäusler et al. (2015).

4. Experiments

In this section, we analyze empirical properties of our procedure. To this end, we first in-
troduce two performance measures, which enable us to empirically assess the quality of the
recovered components in terms of stability across groups. We illustrate the performance of
groupICA as compared to a pooled version of ICA on simulated data with and without con-
founding. We also compare on real data and outline potential benefits of using our method
when analyzing multi-subject EEG data.
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X1 X2

X3

S1 S2

S3

H1 H2
X1 ← b1,2X

2+ S1 +H1

X2 ← b2,1X
1 + b2,3X

3+ S2 +H2

X3 ← b3,1X
1+ S3 +H1 +H2

Figure 2. Illustration of an SCM with (including colored nodes H1, H2) and without (exclud-
ing colored nodes) confounding.

4.1. Assessing the quality of recovered sources

Assessing the quality of the recovered sources in an ICA setting is an inherently difficult task,
as is typical for unsupervised learning procedures. In particular, the unidentifiable scale and
ordering of the sources as well as the unclear choice of a performance measure render this task
difficult. Provided that ground truth is known, one way to measure how close the estimated
components V̂ = (v̂1, . . . , v̂d)> are to the true ones V = (v1, . . . , vd)> is by the following
order- and scale-invariant correlation accuracy (CA) score

CA(V, V̂ ) :=
d∑

k=1

max
i,j∈Ik×Jk

∣∣∣Ĉorr(vi, v̂j)
∣∣∣ ,

where I1 × J1 = {1, ..., d}2 and Ik+1 × Jk+1 = Ik × Jk \ {arg maxi,j∈Ik×Jk |Ĉorr(vi, v̂j)|} is
recursively defined as the set of all row-index pairs that have previously been unmatched.
This leads to a greedy matching of row pairs, ensuring that eventually each row of V is
matched to exactly one row of V̂ . In short, the CA score measures the (empirical) correlation
between rows of the true and the estimated unmixing matrix, while the order indeterminacy
is resolved by a greedy pairwise matching of the rows.

Obviously, we require a different performance measure for our real data experiments where
the true unmixing matrix is unknown. Here, we check whether the desired independence
(without constant confounding) is achieved by computing the following covariance instability
score (CIS) matrix which measures the instability of the covariance structure of the unmixed
sources Ŝ and is defined for a set of groups G and a partition (Pg)g∈G (see Section 2.2) by

CIS(Ŝ,G, (Pg)g∈G) :=
1

|G|
∑
g∈G

2

|Pg|(|Pg| − 1)

∑
e∈Pg

 Ĉov(Ŝe)− Ĉov(Ŝē)

σ̂
Ŝg
· σ̂>

Ŝg

2

,

where σ̂
Ŝ
∈ Rd×1 is the empirical standard deviation of Ŝ and the fraction is taken element-

wise. The CIS matrix is approximately diagonal whenever Ŝ can be written as the sum of
independent source signals S and confounding H with fixed covariance. This is condensed
into one scalar that reflects how stable the sources’ covariance structure is by averaging the

11



off-diagonals of the CIS matrix

MCIS(Ŝ,G, (Pg)g∈G) :=
1

d(d− 1)

d∑
i,j=1
i 6=j

[
CIS(Ŝ,G, (Pg)g∈G)

]
i,j
.

The mean covariance instability score (MCIS) can be understood as a measure of indepen-
dence of the signal process S after subtracting the constant confounding term. High values of
MCIS imply large dependences (beyond constant confounding) between the signals and low
values imply small dependences. In particular, the measure remains valid in settings without
confounding in which case small values imply uncorrelated sources across observations. De-
pending on the approximate joint matrix diagonalizer used in the groupICA estimation, the
MCIS is directly or indirectly minimized. We therefore expect that this score is small on the
training data whenever the joint diagonalization was successful.

4.2. Competing methods

In all of our numerical experiments, we apply groupICA as outlined in Algorithm 1, where we
partition each group based on equally spaced grids, run a fixed number of 10 ·103 iterations of
the uwedge approximate joint diagonalizer and compare it to two other methods. The first,
is a pooled version of the popular FastICA algorithm due to Hyvärinen (1999), where we
simply neglect the group structure. As implementation we use the FastICA implementation
from the scikit-learn Python library due to Pedregosa et al. (2011) and take the defaults for
all parameters. The comparison to this method aims to illustrate that it is indeed useful to
explicitly account for existing group-structures. For the remainder of the paper we will denote
this method by pooledICA. The second method we compare to is a random projection of the
sources, where the unmixing matrix is simply sampled with iid standard normal entries. The
idea of this comparison is to give a baseline of the unmixing problem. Moreover, it gives some
quantification to the variance of our assessment measures which we discussed in Section 4.1.
In order to illustrate the variance in this method, we generally sample 100 random projections
and show the results for each of them.

4.3. Simulations

In this section, we investigate empirical properties of groupICA in simulated and hence well-
controlled scenarios. First off, we show that we can recover the correct mixing matrix given
that the data is generated according to our model (2.1) and Assumptions 1 and 2 hold, while
pooledICA necessarily falls short in this setting (cf. Section 4.3.1). Moreover, in Section 4.3.2
we show that even in the absence of any confounding (i.e., when the data follows the ordinary
ICA model and H ≡ 0 in our model) we remain competitive with ordinary ICA. All of our
simulations are based on block-wise shifted variance data, which we describe in Data Set 1.

4.3.1. Dependence on confounding strength

For this simulation experiment, we sample data according to Data Set 1 and choose to simulate
n = 100 · 103 (dimension d = 22) samples from m = 20 groups where each group contains
n/m = 5·103 observations. Within each group, we then select a random partition consisting of
20 (i.e., |Pg| = 20) subsets while ensuring that these have the same size on average. We fix the
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Block-wise shifted variance data

For our simulations, we select m equally sized groups G := {g1, . . . , gm} on the data points
{1, . . . , n} and for each group g ∈ G construct a partition Pg. Then, we sample a model
of the form

Xi = A · (Si + C ·Hi) ,

where the values on the right-hand side are sampled as follows:

• A,C ∈ Rd×d are sampled with iid entries from N (0, 1) and N (0, 1
d), respectively.

• For each g ∈ G the variables Hi ∈ Rm are sampled from N (0, σ2
g Idm), where the

σ2
g are sampled iid from Unif(0.1, b1).

• For each g ∈ G and e ∈ Pg the variables Si ∈ Rd are sampled from N (0, η2
e Idd),

where the η2
e are sampled iid from Unif(0.1, b2).

The parameters b1 and b2 are selected in such a way that the expected signal strength
c1 := E(|η2

e − η2
f |) and confounding strength c2 := E(|σ2

g − σ2
h|) are as dictated by the

respective experiment. Due to the uniform distribution this reduces to

b1 = 3(c1 + 0.1) and b2 = 3(c2 + 0.1).

Data Set 1. Description of the synthetic data sets used in the simulations in Section 4.3.

signal strength to c1 = 1 and consider the behavior of groupICA (applied to half of the groups
with an equally spaced grid of 10 partitions per group) for different confounding strengths
c2 = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. The results for 1000 repetitions are shown in Figure 3.

The results indicate that in terms of the CA score pooledICA becomes worse as the con-
founding strength increases and systematically estimates an incorrect unmixing matrix. While
groupICA shows an increased variance of the CA score as the confounding strength increases,
it is less severely affected in terms of bias; the increase in variance is expected due to the
decreasing signal to noise ratio. In terms of MCIS the behavior is analogous; with increasing
confounding strength the pooledICA unmixing estimation is systematically biased resulting
in high MCIS scores both out-of-sample and even in-sample.

4.3.2. Efficiency in absence of group confounding

For this simulation experiment, we sample data according to Data Set 1 and we choose to
simulate n = 20 · 103 (dimension d = 22) samples from m = 10 groups where each group
contains n/m = 103 observations. Within each group, we then select a random partition
consisting of 10 (i.e., |Pg| = 10) subsets while ensuring that these have the same size on
average. This time, to illustrate performance in the absence of confounding, we fix the
confounding strengths c2 = 0 and consider the behavior of groupICA (applied to half of the
groups with an equally spaced grid of 4 partitions per group) for different signal strengths
c1 = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. The results for 1000 repetitions are shown in Figure 4.

The results indicate that overall groupICA performs competitive in the confounding-free
case. In particular, there is no drastic negative hit on the performance of groupICA as com-
pared to pooledICA in settings where the data follows the ordinary ICA model. In sum-
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Figure 3. Results of the simulation experiment described in Section 4.3.1. Plot shows per-
formance measures (CA: large implies close to truth; MCIS: small implies stable)
for fixed signal strength and various confounding strengths. The difference between
pooledICA and groupICA is more prominent for higher confounding strengths where
the estimates of pooledICA are increasingly different from the true unmixing matrix
and the sources become increasingly unstable.

mary, this means that groupICA performs well on a larger model class consisting of both the
group-wise confounded as well as the confounding-free case. More precisely, an advantage
over pooledICA is gained in confounded cases (as shown in Section 4.3.1) while there is no
(strong) disadvantage in unconfounded cases. This suggests that the ordinary ICA algorithms
are to be preferred if the data is known to exactly follow the ordinary ICA model, otherwise,
if in doubt about the presence of hidden confounding, one may be better off using groupICA
and allowing for a richer model class.

4.4. EEG experiments

To illustrate the applicability of our method to real data, we apply it to two publicly available
EEG data sets, CovertAttention and BCICompIV2a as described in Data Set 2 and Data Set 3,
respectively. For both data sets, we compare the recovered sources of groupICA with those
recovered by pooledICA and the sources received from a random projection. Since ground
truth is unknown we report comparisons in the following sections that are based on the
following three criteria:
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Figure 4. Results of the simulation experiment described in Section 4.3.2. Plot shows perfor-
mance measures (CA: large implies close to truth; MCIS: small implies stability)
for data generated without confounding and for various signal strengths. These
results are reassuring, as they indicate that when applied to data that follows the
ordinary ICA model, groupICA still performs competitive to pooledICA although it
allows for a richer model class.

stability and independence
We use MCIS (cf. Section 4.1) to assess the stability and independence of the recovered
sources both in- and out-of-sample.

classification accuracy
For both data sets there is label information available that associates certain time
windows of the EEG recordings with the task the subjects where performing at that
time. Based on the recovered sources, we build a classification pipeline relying on feature
extraction and classification techniques that are common in the field (Lotte et al., 2018).
The achieved classification accuracy serves as a proxy of how informative and suitable
for this common feature and classification pipeline the extracted signals are.

topographies
For a qualitative assessment, we inspect the topographic maps of the extracted sources,
as well as the corresponding power spectra and a raw time series chunk. This is used to
illustrate that the sources recovered by groupICA do not appear random or implausible
for EEG recordings and are qualitatively similar to what is expected from ordinary ICA.
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CovertAttention data

This data set is due to Treder et al. (2011) and consists of EEG recordings of 8 sub-
jects performing multiple trials of covertly shifting visual attention to one out of 6 cued
directions. The data set contains recordings of

• 8 subjects,

• for each subject there exist 6 runs with 100 trials,

• each recording consists of 60 EEG channels recorded at 1000 Hz sampling frequency,
while we work with the publicly available data that is downsampled to 200 Hz.

Since visual inspection of the data revealed data segments with huge artifacts and details
about how the publicly available data was preprocessed was unavailable to us, we removed
outliers and high-pass filtered the data at 0.5 Hz. In particular, along each dimension
we set those values to the median along its dimension that deviate more than 10 times
the median absolute distance from this median. We further preprocess the data by
re-referencing to common average reference (car) and projecting onto the orthogonal
complement of the null component. For our unmixing estimations, we use the entire
data, i.e., including intertrial breaks.
For classification experiments (cf. Section 4.4.2) we use, in line with Treder et al. (2011),
the 8–12 Hz bandpass-filtered data during the 500–2000 ms window of each trial, and use
the log-variance as bandpower feature (Lotte et al., 2018).

Data Set 2. Description of the CovertAttention data, a publicly available EEG data set of
subjects performing a covert attention shift task.

4.4.1. Stability and independence

We aim to probe stability not only in-sample but also verify the expected increase in stability
when applying the unmixing matrix to data of new unseen subjects, i.e., to new groups of
samples with different confounding specific to that subject. In order to analyze stability in
terms of the MCIS both in- and out-of-sample and for different amounts of training samples,
we proceed by repeatedly splitting the data into a training and a test data set. More precisely,
we construct all possible splits into training and test subjects for any given number of training
subjects. For each pair of training and test set, we fit an unmixing matrix using groupICA,
pooledICA and random as described in Section 4.2. We then compute the MCIS on the
training and test data for each method separately and collect the results of each training-test
split with the same number of subjects used for training.

Results obtained on the CovertAttention data set (with equally spaced partitions of ≈15
seconds length) are given in Figure 5 and the results for the BCICompIV2a data set (with
equally spaced partitions of ≈9 seconds length) are shown in Appendix B.1, Figure 8. For
both data sets the results are qualitatively similar and support the claim that the unmixing
obtained by groupICA is more stable when transferred to new unseen subjects. While for
pooledICA the instability on held-out subjects does not follow a clear decreasing trend with
increasing number of training subjects, groupICA can successfully make use of additional
training subjects to learn a more stable unmixing matrix.
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BCICompIV2a data

This data set is due to Tangermann et al. (2012, Section 5) and consists of EEG recordings
of 9 subjects performing multiple trials of 4 different motor imagery tasks. The data set
contains recordings of

• 9 subjects, each recorded on 2 different days,

• for each subject and day there exist 6 runs with 48 trials,

• each recording consists of 22 EEG channels recorded at 250 Hz sampling frequency,

• and is bandpass filtered between 0.5 and 100 Hz and is 50 Hz notch filtered.

For our analysis we only use the trial-data, i.e., the concatenated segments of seconds 3–6
of each trial (corresponding to the motor imagery part of the trials (Tangermann et al.,
2012)). We further preprocess the data by re-referencing to common average reference
(car) and projecting onto the orthogonal complement of the null component.
As features for classification experiments (cf. Section 4.4.2) on this data set we use band-
power in the 8–30 Hz band as measured by the log-variance of the 8–30 Hz bandpass-
filtered trial data (Lotte et al., 2018).

Data Set 3. Description of the BCICompIV2a data that consists of a publicly available motor
imagery data set.

The results for random projections provide a reference for the variance in MCIS which varies
for different numbers of training subjects that determine the number of training-test splits.
Furthermore, they hint at a general problem when assessing blind source separation results.
As expected, random projections perform quite well in terms of stability when transferred
to new subjects (out-of-sample) since they avoid any bias towards training data whatsoever.
In other aspects, however, these sources may be clearly inferior, though stable, which we
demonstrate in the following section.

To further probe the behavior for different partition grid sizes, we repeat the experiment
for an equal training-test subject split (i.e., 4 training/4 test subjects for CovertAttention and
4 training/5 test sets for BCICompIV2a) for varying partition grid sizes. The upshot is, the
higher the number of partitions the greater the stability gain of groupICA over pooledICA.
This suggests that a small partition grid size that still allows for a reasonable covariance
estimation is preferable. The detailed results are shown in Appendix B.2, Figure 9 and
Figure 10.

4.4.2. Classification based on recovered sources

While the results in the previous section indicate that groupICA can recover more stable
sources from EEG signals than pooledICA, they also reveal that random projections are
stable when assessed with the MCIS. This implies that in scenarios with an unknown ground
truth the stability of the recovered sources cannot serve as the sole determining criterion for
assessing the quality of recovered sources. In addition to asking whether the recovered sources
are stable, we hence also need to investigate whether the sources extracted by groupICA are
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Figure 5. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained on different numbers of training subjects by either groupICA or
pooledICA (cf. Section 4.4.1), here on the CovertAttention Data Set 2, demon-
strating that groupICA in contrast to pooledICA can successfully incorporate more
training subjects to learn more stable unmixing matrices when applied to new un-
seen subjects. Random projections are expected to perform quite well out-of-sample
as they avoid any bias towards the training data. They are shown here only as a
point of reference since they are clearly not an option for real data analysis.

in fact reasonable or meaningful (as, most likely, opposed to the randomly projected sources).
In the “America’s Got Talent Duet Problem” (cf. Example 3.1) this means that each of the
recovered sources should only contain the voice of one singer. For EEG data, this assessment
is not quite as easy. Here, we approach this problem from two angles: (a) in this section we
show that the recovered sources are informative and suitable for common EEG classification
pipelines, (b) in Section 4.4.3 we qualitatively assess the extracted sources based on their
power spectra and topographic maps.

In both data sets there are labeled trials, i.e., segments of data during which the subject
covertly shifts attention to one of six cues (cf. Data Set 2) or performs one of four motor
imagery tasks (cf. Data Set 3). Based on these, one can try to predict the trial label given the
trial EEG data. To mimic a situation where the sources are transferred from other subjects,
we assess the informativeness of the extracted sources in a leave-one-subject-out fashion as
follows. We use the unmixing matrix estimated on data from all but one subject and apply it
to the held-out subject to obtain the extracted source signals. On top of these, we compute
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Figure 6. Cross-validated classification accuracy achieved for each subject when using a lin-
ear support vector classifier and the components obtained on the other remaining
subjects by groupICA, pooledICA, or 100 random projections (cf. Section 4.4.2),
here on the CovertAttention Data Set 2, demonstrating that components extracted
by groupICA contain label information. The green/red/blue/gray dashed line corre-
sponds to groupICA mean, pooledICA mean, random projection mean, and random
guessing level, respectively. For an average of about 310 to be classified trials per
subject an accuracy above 0.203 is significant for non-trivial classification at a 95%
confidence level.

bandpower features for each trial (as described in Data Set 2 and 3) and use a linear support
vector classifier in a one-vs-rest scheme for multiclass classification of the task labels from
these features.

The results are reported in Figure 6 and Appendix B.3, Figure 11 which show for each
subject the cross-validated classification accuracy2 when using the unmixing obtained on the
remaining subjects by either groupICA, pooledICA or 100 random unmixing matrices. The
results on both data sets support the claim that the sources recovered by groupICA are not only
stable but in addition also capture meaningful aspects of the data that enable classification
accuracies that cannot be achieved based on random projections of the EEG signals or when
using pooledICA.

It is worth noting that these classification results depend heavily on the employed classifi-
cation pipeline following the source separation. Here, our goal is only to show that groupICA
does indeed separate the data into informative sources. In practice, and when only classi-
fication accuracy matters, one might also consider using a label-informed source separation
(Dähne et al., 2014), employ common spatial patterns (Koles et al., 1990) or use decoding
techniques based on Riemannian geometry (Barachant et al., 2012). For completeness, in
Appendix B.3 we show accuracies when using a perceptron classifier or a linear discriminant

2We average the accuracies obtained on 200 random stratified 9:1 splits into training and test data.
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analysis classifier with shrinkage instead of the linear support vector classifier.

4.4.3. Topographic maps

The components that groupICA extracts from EEG signals are stable (cf. Section 4.4.1) and
meaningful in the sense that they contain information that enables classification of trial labels,
which is a common task in EEG studies (cf. Section 4.4.2). In this section, we complement the
assessment of the recovered sources by demonstrating that the results obtained by groupICA
lead to topographies, activation maps, power spectra and raw time series that are similar to
what is commonly obtained during routine ICA analyses of EEG data when the plausibility
and nature of ICA components is to be judged.

Topographies are common in the EEG literature to depict the relative projection strength
of extracted sources to the scalp sensors. More precisely, the column-vector aj of A = V −1

that specifies the mixing of the j-th source component is visualized as follows. A sketched
top view of the head is overlayed with a heatmap where the value at each electrodes’ position
is given by the corresponding entry in aj . These topographies are indicative of the nature
of the extracted sources, for example the dipolarity of source topographies is a criterion
invoked to identify cortical sources (Delorme et al., 2012) or the topographies reveal that
the source mainly picks up changes in the electromagnetic field induced by eye movements.
Another way to visualize an extracted source is an activation map, which is obtained by
depicting the vector Ĉov(X)v>j (where vj is j-th row of unmixing matrix V ) and shows for
each electrode how the signal observed at that electrode covaries with the signal extracted by
vj (Haufe et al., 2014). Besides inspecting the raw time series data, another criterion invoked
to separate cortical from muscular components is the log power spectrum. For example,
a monotonic increase in spectral power starting at around 20 Hz is understood to indicate
muscular activity (Goncharova et al., 2003) and peaks in typical EEG frequency ranges are
used to identify brain-related components.3.

In Figure 7, we depict the aforementioned criteria for three exemplary components (2nd,
6th and 51st based on our stability ranking) extracted by groupICA on the CovertAttention
Data Set 2. The idea is to demonstrate that groupICA components are qualitatively similar
in these aspects to components extracted by the commonly employed ICA. Therefore, we
choose to display one example of an ocular component (2nd where the topography is indica-
tive of eye movement), a cortical component (6th where the dipolar topography, the typical
frequency peak at around 8–12 Hz, and the amplitude modulation visible in the raw time
series are indicative of the cortical nature), and an artifactual component (51st where the ir-
regular topography and the high frequency components indicate an artifact). For comparison,
we additionally show for each component the topographies of the components extracted by
pooledICA or the random projection by matching the recovered source which most strongly
correlates with the one extracted by groupICA. Once again, this illustrates, that, while ran-
dom components are stable, they lead to irregular topographies. This is not the case for the
components extracted by groupICA, the topographies of which closely resemble the results
one would obtain from a commonly employed ICA analysis on EEG data.

3These are commonly employed criteria which are also advised in the eeglab tutorial (Delorme and
Makeig, 2004, https://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA) and the neu-
rophysiological biomarker toolbox wiki (Hardstone et al., 2012, https://www.nbtwiki.net/doku.php?id=
tutorial:how_to_use_ica_to_remove_artifacts).
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Figure 7. Visualization of exemplary EEG components recovered on the CovertAttention
Data Set 2. On the left the topographies of three components are shown where the
mixing matrix is the inverse of a random unmixing matrix (Arandom), the unmixing
matrix obtained by pooledICA (AICA) and that of groupICA (AgroupICA). On the
right we depict, for a randomly chosen subject, the activation maps, the log power
spectra, and randomly chosen chunks of the raw time series data corresponding to
the respective groupICA components. Components extracted by groupICA are qual-
itatively similar to those of the commonly employed pooledICA; see Section 4.4.3
for details.

5. Conclusion

In this paper, we construct a method for recovering independent sources corrupted by group-
wise confounding. It extends ordinary ICA to an easily interpretable model which we believe
is relevant for many practical problems as is demonstrated in Section 4.4 for EEG data. Based
on this model, we give explicit assumptions under which one can expect the sources to be
identifiable in the population case (cf. Section 2.1). Moreover, we introduce a straightforward
method for estimating the sources based on the well-understood concept of approximate joint
matrix diagonalization. As illustrated in the simulations in Section 4.3, this estimation pro-
cedure performs competitive even for data from an ordinary ICA model, while additionally
being able to adjust for group-wise confounding. Finally, we show that the groupICA model
indeed performs reasonably on typical EEG data sets and leads to improvements in compari-
son to naive pooling approaches, while at the same time preserving an easy interpretation of
the recovered sources.
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Schalk, G., Schlögl, A., Vidaurre, C., Waldert, S., and Blankertz, B. (2012). Review of the
BCI Competition IV. Frontiers in Neuroscience, 6:55.

Tichavsky, P. and Yeredor, A. (2009). Fast Approximate Joint Diagonalization Incorporating
Weight Matrices. IEEE Transactions on Signal Processing, 57(3):878–891.

Treder, M., Bahramisharif, A., Schmidt, N., Van Gerven, M., and Blankertz, B. (2011).
Brain-computer interfacing using modulations of alpha activity induced by covert shifts of
attention. Journal of NeuroEngineering and Rehabilitation, 8(1):24.

Zhukov, L., Weinstein, D., and Johnson, C. (2000). Independent component analysis for EEG
source localization. IEEE Engineering in Medicine and Biology Magazine, 19(3):87–96.

Ziehe, A., Laskov, P., Nolte, G., and Müller, K.-R. (2004). A Fast Algorithm for Joint
Diagonalization with Non-orthogonal Transformations and its Application to Blind Source
Separation. Journal of Machine Learning Research, 5(7):777–800.

25



A. Supplementary proof

Proof The theorem is proven by the correct invocation of Kleinsteuber and Shen (2013,
Theorem 1). We first define the unmixing matrix V = A−1 and introduce the set of matrices

D := {V (Cov(Xk)− Cov(Xl))V
> | g ∈ G and k, l ∈ g}.

Due to the underlying group ICA model and Assumption 1 all matrices in the set D are
diagonal (cf. (2.2)). Moreover, for g ∈ G and k, l ∈ g it holds that

V (Cov(Xk)− Cov(Xl))V
> = Cov(Sk)− Cov(Sl)

= diag(Var(S1
k)−Var(S1

l ), . . . ,Var(Sd
k)−Var(Sd

l )).

Using notation as in Kleinsteuber and Shen (2013) we define for all j ∈ {1, . . . , d} the vectors

zj =

((
Var(Sj

k)−Var(Sj
l )
)
k,l∈g

)
g∈G

.

Then, Assumption 2 implies for all distinct pairs p, q ∈ {1, . . . , d} that

|Ĉorr(zp, zq)| =
|zp · zq|
‖zp‖‖zq‖

< 1.

Hence, it holds that ρ(D) < 1, where ρ is as defined in Kleinsteuber and Shen (2013).
Hence, we can invoke Kleinsteuber and Shen (2013, Theorem 1) to conclude that any matrix
M ∈ Rd×d which satisfies that MDM> is diagonal for all D ∈ D is equal to the identity
matrix up to scaling and permutation of its columns.

Finally, assume there exists another (invertible) mixing matrix Ã such that for all g ∈ G
and all k, l ∈ g it holds that

Ã−1(Cov(Xk)− Cov(Xl))(Ã
−1)> = Cov(Sk)− Cov(Sl).

Then, it also holds that

(V Ã)(Cov(Sk)− Cov(Sl))(V Ã)> = V (Cov(Xk)− Cov(Xl))V
>,

which is diagonal. By the above reasoning it follows that V Ã is equal to the identity matrix
up to permutation and rescaling of its columns. Moreover, this implies that Ã is equal to A
up to scaling and permutation of its columns. This completes the proof of Theorem 2.1. �
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B. Complementary material showing results of EEG experiments

B.1. Stability and independence
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Figure 8. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained on different numbers of training subjects by either groupICA or
pooledICA (cf. Section 4.4.1), here on the BCICompIV2a Data Set 3, demonstrating
that groupICA can successfully incorporate more training subjects to learn more
stable unmixing matrices when applied to new unseen subjects.
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B.2. Dependence on partition grid size
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Figure 9. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained for varying partition grid sizes by either groupICA or pooledICA (cf.
Section 4.4.1), here on the CovertAttention Data Set 2, demonstrating a greater
gain in stability of groupICA over pooledICA for smaller partition grid sizes.
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Figure 10. Experimental results for comparing the stability of sources (MCIS: small implies
stable) trained for varying partition grid sizes by either groupICA or pooledICA
(cf. Section 4.4.1), here on the BCICompIV2a Data Set 3, demonstrating a greater
gain in stability of groupICA over pooledICA for smaller partition grid sizes.
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B.3. Classification
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Figure 11. Cross-validated classification accuracy achieved for each subject when using a lin-
ear support vector classifier and the components obtained on the other remaining
subjects by groupICA, pooledICA, or 100 random projections (cf. Section 4.4.2),
here on the BCICompIV2a Data Set 3, demonstrating that components extracted
by groupICA contain label information. The green/red/blue/gray dashed line cor-
responds to groupICA mean, pooledICA mean, random projection mean, and ran-
dom guessing level, respectively. For the 576 to be classified trials per subject an
accuracy above 0.280 is significant for non-trivial classification at a 95% confidence
level.
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Figure 12. Results as in Figure 11 (on BCICompIV2a data set) using a perceptron classifier
instead of a linear support vector classifier.
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Figure 13. Results as in Figure 11 (on BCICompIV2a data set) using a shrinkage linear
discriminant analysis instead of a linear support vector classifier.
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Figure 14. Results as in Figure 6 (on CovertAttention data set) using a perceptron classifier
instead of a linear support vector classifier.
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Figure 15. Results as in Figure 6 (on CovertAttention data set) using a shrinkage linear
discriminant analysis instead of a linear support vector classifier.
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