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1 EMPIRICAL INFERENCE

1.1 Research Overview

The problems studied in the department1 can
be subsumed under the heading ofempirical
inference, i.e., inference performed on the ba-
sis of empirical data. This includes statistical
learning, but also the inference of causal struc-
tures from statistical data, leading to models that
provide insight into the underlying mechanisms,
and make predictions about the effect of inter-
ventions. Likewise, the type of empirical data
can vary, ranging from biological measurements
(e.g., in neuroscience) to astronomical observa-
tions. We are conducting theoretical, algorithmic,
and experimental studies to try and understand
the problem of empirical inference.

The department was started around statisti-
cal learning theory and kernel methods. It has
since broadened its set of inference tools to in-
clude a stronger component of Bayesian meth-

ods, including graphical models with a recent
focus on issues of causality. In terms of the infer-
ence tasks being studied, we have moved towards
tasks that go beyond the relatively well-studied
problem of supervised learning, such as semi-
supervised learning or transfer learning. Finally,
we have continuously striven to analyze challeng-
ing datasets from biology, astronomy, and other
domains, leading to the inclusion of several appli-
cation areas in our portfolio. No matter whether
the applications are done in the department or
in collaboration with external partners, consider-
ing a whole range of applications helps usstudy
principles and methods of inference, rather than
inference applied to one speci�c problem do-
main.

The most competitive publication venues in
empirical inference are NIPS (Neural Informa-

1The department of EI previously belonged to the MPI for biological Cybernetics. The present extended evaluation
covers the period since the last departmental evaluation as part of that institute, i.e., since 2009.

Max Planck Institute for Intelligent Systems, Stuttgart � Tübingen | Research and Status Report 2010 – 2015 | Part I



41 Empirical Inference
1.1 Research Overview

tion Processing Systems), ICML (International
Conference on Machine Learning), UAI (Uncer-
tainty in Arti�cial Intelligence), and for theoreti-
cal work, COLT (Conference on Learning The-
ory). The presence at these conferences makes
us one of the top international machine learning
labs. In addition, we sometimes submit our work
to the leading application oriented conferences
in neighboring �elds including computer vision
(ICCV, ECCV, CVPR) and data mining (KDD,
ICDM, SDM), as well as to specialized journals.
Our work has earned us a number of awards, in-
cluding best paper prizes at COLT 2003, NIPS
2004, COLT 2005, COLT 2006, ICML 2006,
ALT 2007, DAGM 2008, CVPR 2008, ISMB
2008, ECCV 2008, NIPS 2008, NIPS 2009, UAI
2010, ICINCO 2010, DAGM 2011, IROS 2012,
NIPS 2013, CIP 2014, and honorable mentions
at IROS 2008, NIPS 2009, DAGM 2009, KDD
2010, ECML/PKDD 2011, and IROS 2012.

Below, we brie�y describe our research direc-
tions in more detail. We begin with a high-level
overview of the broad directions, followed by
short descriptions of a selection of projects.

Theoretical studies, algorithms, and applica-
tions often go hand in hand. For instance, it may
be the case that someone working on a speci�c
application will develop a customized algorithm
that turns out to be of independent theoretical
interest. Such serendipity is a desired side effect
caused by interaction across groups and research
areas, for instance during our frequent depart-
mental talks. It concerns cross-fertilization of
methodology (e.g., kernel independence mea-
sures used in causal inference), the transfer of
algorithmic developments or theoretical insights
to application domains (e.g., causal inference in
neuroscience), or the combination of different
application areas (e.g., using methods of compu-
tational photography for MR motion correction
in neuroscience).

The linear organization of the text does not
permit an adequate representation of all these
connections. Below, we have opted for an orga-
nization of the material that devotes individual
sections to our main application areas (computa-
tional imaging, robot learning, neuroscience, and
bioinformatics), and that comprises four method-
ological sections, on learning algorithms, causal
inference, probabilistic inference, and statistical
learning theory. We begin with the latter.

Statistical Learning Theory A machine
learning algorithm is given training data and tries
to learn a model that is well-suited to describe
the data and that can be used to make predictions.
The goal of statistical learning theory is to assess
to which extent such algorithms can be success-
ful in principle. The general approach is to as-
sume that the training data have been generated
by an unknown random source, and to develop
mathematical tools to analyze the performance
of a learning algorithm in statistical terms: for
example, by bounding prediction errors (“gener-
alization bounds”) or by analyzing large sample
behavior and convergence of algorithms on ran-
dom input (“consistency”). Over the last decade,
statistical learning theory has made signi�cant
progress in the analysis of supervised learning
problems such as classi�cation and regression.
The department has made various contributions
to this area, including two recent NIPS orals
(2011, 2012), where we prove that regressors
can escape the curse of dimensionality if the in-
trinsic dimensionality of the data is low [546],
and provide methods to increase performance
by introducing gradient weights [481]. We have,
however, gradually shifted our attention to areas
of machine learning where statistical learning
theory is less well developed. These include set-
tings that incorporate both labeled and unlabeled
data, such as semi-supervised or transductive
learning, active learning and transfer learning,
as well as unsupervised learning tasks such as
clustering, manifold learning, graph-based learn-
ing, and the emerging �eld of complex network
science. Our goal is to contribute statistical foun-
dations to these exciting new challenges where
pioneering work can be done.

Active learning exploits structure and informa-
tion in unlabeled data to reduce label supervision
by requesting labels only for a small set of points
from a large pool. We provided novel statistical
guarantees for cluster-based active learning pro-
cedures [340] and a �rst formal analysis of the
use of active learning for learning under covari-
ate shift [341].

We studied theoretical aspects of transduc-
tive learning [342], introduced a new complexity
measure of function classes called Permutational
Rademacher Complexity, which is better suited
for transductive problems than other popular ana-
logues, and used it to derive data-dependent gen-
eralization bounds for transductive algorithms.
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One focus in the area of random geometric
graphs was on the limit behavior of distance
functions as the size of the graph increases. We
showed that several of the well-known distance
functions on graphs, such as the shortest path
distance or the commute distance, converge to
undesired limit functions that cannot be justi-
�ed for applications. As an alternative, we con-
structed a family of p-resistance distances that
shows an interesting phase transition behavior
and, in certain regimes of p, does not suffer from
those problems.

We conclude with two projects connected to
other departmental research themes. For rein-
forcement learning, we derived PAC-Bayesian
concentration inequalities for multiple simultane-
ously evolving and interdependent martingales
[138]. We applied the inequalities to analyze
importance-weighted sampling and exploration-
exploitation trade-off in multi-armed bandits
with side information [536], yielding adaptation
to the relevant side information and run time
improvements. For causal inference, we devel-
oped an approach posing cause-effect inference
as binary classi�cation of probability measures.
We proposed a computationally ef�cient algo-
rithm based on kernel mean embeddings achiev-
ing state of the art performance, and provided a
risk bound for the approach [356].

Learning Algorithms Learning algorithms
based on kernel methods have enjoyed con-
siderable success in a wide range of super-
vised learning tasks, such as regression and
classi�cation. One reason for the popularity of
these approaches is that they solve dif�cult non-
parametric problems by mapping data points into
high dimensional spaces of features, speci�cally
reproducing kernel Hilbert spaces (RKHSes), in
which linear algorithms can be brought to bear,
leading to solutions taking the form of kernel
expansions [487].

In recent years, we have developed kernel
mappings ofprobability distributionsto RKHSes
[142]. For suf�ciently rich feature spaces, these
maps can be shown to be injective [253], i.e.,
they represent probability distributions without
any loss of information. This property is pro-
foundly linked to questions of optical imaging,
by viewing a Fraunhofer imaging process as a
particular case of kernel mapping [423].

Using such mappings, we can compare sam-

ples from two distributions, to determine whether
they are distinguishable to a statistically signi�-
cant degree [142]. This comprises the problem of
independence testing as a special case, where we
determine the difference between the embedding
of a joint distribution and that of the product of
the marginals.

They can be generalized to yield embeddings
of conditional distributions, which are a core
building block of a number of learning algo-
rithms. Conditional distribution embeddings can
be used to perform Bayesian inference on graph-
ical models [556, 558, 602]. A second applica-
tion is in reinforcement learning, where condi-
tional expectations are used to update the state
of an agent given its observations and actions
[462]. A �nal application of conditional mean
embeddings is the challenging task of testing for
conditional dependence [390, 519]. This is of
interest for �nding which covariates contain re-
dundant information, but also when performing
causal inference, by providing a generalization
of the well-known PC algorithm by Glymour
and Spirtes that can incorporate nonlinear inter-
actions.

Although kernel methods were originally asso-
ciated with statistical learning theory, our work
has helped move them towards probabilistic ap-
proaches. This includes our generalization of
SVMs to the case where the inputs are not point
observations, but nontrivial probability measures
[415, 478]. This allows us to model uncertainty
of the inputs. It also provides a generalization
of SVMs towards multi-scale kernel expansions
that naturally arise as a consequence of nontriv-
ial input measures, as well as a generalization of
SVMs towards multi-layer systems.

Kernel means are used throughout the �eld
nowadays, and it is thus of signi�cant interest
to study their estimation properties. This led us
to generalizations of classical results on Stein
shrinkage estimation [35, 395].

Recently, we have started exploiting kernel
means in the context of probabilistic program-
ming, proposing an elegant way of representing
the distribution of arbitrary arithmetic functions
of random variables. Being a kernel method, this
approach is applicable also to non-vectorial data
types and accordingly holds promise for gener-
alizing standard computing operations to distri-
butions over data types [43]. Further details on
our work on learning algorithms, including for
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the new �eld of network science, is included in
the project reports below.

Causal inference The detection and use of
statistical dependences form the core of statistics
and machine learning. In recent years, machine
learning methods have enabled us to perform
rather accurate prediction, often based on large
training sets, for complex nonlinear problems
that not long ago would have appeared com-
pletely random. However, in many situations we
would actually prefer a causal model to a purely
predictive one; i.e., a model that might tell us
that a speci�c variable (say, whether or not a
person smokes) is not just statistically associated
with a disease, but causal for the disease.

Pearl's graphical approach to causal model-
ing generalizes Reichenbach's common cause
principle and characterizes the observable statis-
tical (conditional) independences that a causal
structure should entail. Many causal inference
methods build on these independences to infer
causal graphs from data. This “graphical models”
approach to causal inference has several weak-
nesses that we try to address in our work: it only
can infer causal graphs up to Markov equiva-
lence, it does not address the hardness of condi-
tional independence testing, and it usually does
not worry about the complexity of the underly-
ing functional regularities that generate statisti-
cal dependences in the �rst place. Our work in
this �eld is characterized by the following three
aspects:

1. We usually work in terms of structural equa-
tion models (SEMs) or functional causal models
(FCMs), i.e., we do not take statistical depen-
dences as primary, but rather study mechanistic
models which give rise to such dependences. In
FCMs, each variable is modeled as a determinis-
tic function of its direct causes and some noise
variableN , e.g.,Y = f (X; Z; N ); all noise
variables are assumed to be jointly independent.
FCMs do not only allow us to model observa-
tional distributions; one can also use them in
order to model what happens under interven-
tions (e.g., gene knockouts or randomized stud-
ies). Our work in this domain includes the use
of restricted function classes such as additive
noise models, which solve the previously open
problems of cause-effect inference [84, 624] and

allow the detection of confounders in certain
cases [625]. It also includes functional models
where the functions are implemented by Tur-
ing machines and the implied dependences are
not statistical ones, but characterized in terms
of Kolmogorov complexity. We have developed
a theory of graphical models for such models,
analogous to the known probabilistic approach.
It uses algorithmic mutual information rather
than the usual statistical notion of mutual infor-
mation, and it can be derived from a computing
model (using Turing machines) just like graphi-
cal models can be derived from FCMs. Since it
is based on algorithmic complexity of bit strings,
it is in principle also applicable to individual
(non-statistical) observations [234, 590].

2. Viewed from an FCM perspective, the cru-
cial assumption of the graphical approach to
causality is statistical independence of all noise
terms. Intuitively, it is clear that as the noises
propagate through the graph, they pick up de-
pendences due to the graph structure, hence the
assumption of initial independence allows us to
tease out properties of that structure. We believe,
however, that much can be gained by consider-
ing a moregeneral independence assumption
related to notions of invariance and autonomy of
causal mechanisms. Here, the idea is that causal
mechanism are autonomous entities of the world
that (in the generic case) do not depend on each
other, and changing (or intervening on) one of
them often leaves the remaining ones invariant.

In a �rst study, we were able to show that if
the effect is a deterministic invertible function
of the cause which satis�es a suitable indepen-
dence condition relative to the cause distribution,
then this independence condition is provably vio-
lated between the effect and the inverse function
[134, 562]. We have used the general indepen-
dence assumption to connect the problems of
covariate shift and transfer learning to causality,
arguing that the causal conditionals (or mecha-
nisms) should often be invariant under domain
changes [360, 470].2 We have also exploited it
to develop methods for inferring causal graphs
based on this kind of invariance [20].

3. This leads to the third characteristic aspect
of our work on causality. Wherever possible,
we attempt to establish connections to machine
learning, and indeed we believe that some of

2M. Rojas-Carulla, B. Schölkopf, R. Turner, J. Peters. Causal transfer in machine learning. preprinthttp://arxiv.org/abs/
1507.05333. 2016.
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the hardest problems of machine learning (such
as those of domain adaptation and transfer) are
best addressed using causal thinking. We have
shed light on the conditions under which semi-
supervised learning (SSL) works, showing that
knowledge of the underlying causal structure
allows us to predict whether SSL can possibly
work [24, 470]. Likewise, we believe that ma-
chine learning approaches are useful in advanc-
ing the �eld of causality. Some examples include
the kernel-based tests for (conditional) indepen-
dence developed in our lab [390, 519], our work
on consistency of cause-effect inference [400],
and the application of kernel mean embeddings
to learn and analyze cause-effect-inference as a
classi�cation problem [356].

Our lab has played a major role in putting
causal inference on the agenda of the machine
learning community, and we expect that causal
inference will have practical implications for
many scienti�c inference problems, especially
where interventions are not feasible (e.g., in as-
tronomy [349] and neuroscience [14, 34]). It
touches statistics, econometrics, and philosophy,
and it constitutes one of the most exciting �eld
for conceptual basic research in machine learn-
ing today.

Probabilistic Inference The probabilistic
formulation of inference—conditioning probabil-
ity measures encoding prior assumptions on ob-
served data by multiplying with a likelihood de-
scribing the data's assumed generative process—
remains one of the main research streams within
machine learning. One of our main themes in
this �eld has been nonparametric inference on
function spaces using Gaussian process models
[240, 371, 543]. We also produced widely used
software for Gaussian process regression [249]
and inference in generalized linear models [130].

The central computational bottleneck in
Bayesian models is the marginalization of latent
variables. This can be computationaly demand-
ing, so approximate inference routines reducing
computational complexity are a major research
theme. This includes work on variational models,
expectation propagation [498], and custom-built
approximations for speci�c applications [232,
452, 651], as well as general integration routines
[396] constructedde novo.

Members of the department have also been
interested in uses of probabilistic inference for
reinforcement learning and control [16, 404].

A broad new research theme has emerged
aroundprobabilistic numerics, the description
of computation itself as probabilistic inference.
Although this work was started in the depart-
ment and several group members are still depart-
ment members, currently we are not discussing
it in further detail. More on this direction can
be found in the project section on probabilistic
numerics, and the separate section on the Emmy
Noether Research Group that has arisen from it.

Computational Imaging Our work in this
domain focuses on how to recover an image from
corrupted measurements by modeling the distor-
tion process and solving the resulting ill-posed
inverse problem using image priors to restore
the most likely image explaining our observa-
tions. We studied two major types of distortions:
blur and noise. The latter included learning ap-
proaches using neural networks, some of them
beating the state of the art BM3D algorithm [450,
539], as well as a collaboration with a depart-
ment of our Stuttgart site [52].

For the purpose of deblurring, we developed
an online method formulti-frame blind decon-
volution [620] and generalized it to be able to
super-resolve and to be robust against saturated
pixels. To extend the applicability of deconvo-
lution algorithms to spatially varying blur, we
proposed theEf�cient Filter Flow (EFF) model
[570], and combined it successfully with our
online blind deconvolution method [620]. This
paved the way to considercamera shake, a ma-
jor source of non-uniform blur in photography.
While it had previously been modeled as spa-
tially invariant, real-world shake leads to spa-
tially variant blur that we modeled using EFF,
improving upon the state-of-the-art [597]. By in-
corporating physical constraints into the shake
model, we signi�cantly decreased running time
and improved reconstruction quality [537, 718].3

Non-uniform blur also results fromlens aber-
rations, usually minimized through sophisti-
cated lens design. Nonetheless, even profes-
sional lenses exhibit residual aberrations, result-
ing in smoothly varying blur that tends to get
worse in the image corners. We developed meth-

3These methods have led to a start-up involving several department members.
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ods that automatically reduce lens aberrations
from images, with or without a priori knowledge
of the lens blur [472, 535]. More recently, we
cast this into a data-driven regression framework,
leading to what is probably the current state of
the art [320]. This has the potential to change
future lens designs by shifting the focus from
expensive hardware solutions towards a combi-
nation of hardware and sophisticated software.

Two relevant application areas of computa-
tional imaging are astronomy and medical imag-
ing, and we brie�y mention some of our work
in that �eld, starting with the latter. Motivated
by our work on camera shake removal, we as-
sayed whether similar ideas could be applied
to magnetic resonance imaging (MRI) motion
correction. The setup is different from regular
camera shake: MR images are taken by recording
trajectories in Fourier space (“k-space”), and a
moving object will blur the different frequencies
in a way that depends on the order in which the k-
space is scanned. By carefully modeling the dis-
tortion process and imposing a sharpness prior
on the resulting image, we were able to recover
excellent images from sequences that would be
rendered useless for standard MR reconstruc-
tion algorithms. This work applies not only for
translational movements but also for rotational
ones [98]. A second line of research, pursued in
collaboration with the University of Tübingen's
Laboratory for Preclinical Imaging, applies ma-
chine learning and image processing methods in
combined PET-MR systems. We have developed
a solution to the problem of PET attenuation cor-
rection, which was licensed to Siemens and won
a best paper award of the �eld's �agship journal
[103, 205].

In astronomy, our work initially focused on
high-resolution imaging using deconvolution
[184], but we applied our expertise also to other
astronomical data analysis problems. Recent
highlights include an approach to combine het-
erogeneous imaging data by voting methods
[361], as well as causal modeling methods for
light curves that have led to the discovery of a
number of previously unknown exoplanets [38,
349].

Robot Learning Research in robotics and ar-
ti�cial intelligence has lead to the development
of complex robots ranging from anthropomor-
phic arms to complete humanoids. In order to

be meaningfully applied in human-inhabited en-
vironments, robots need to possess a variety of
physical abilities and skills. However, program-
ming such skills is a labor- and time-intensive
task which requires a large amount of expert
knowledge. In particular, it often involves trans-
forming intuitive concepts of motions and ac-
tions into formal mathematical descriptions and
algorithms. To overcome such dif�culties, we
use imitation learning to teach robots new motor
skills [238]. A human demonstrator �rst provides
one or several examples of the skill. Informa-
tion recorded through motion capture or physi-
cal interaction is used by the robot to automati-
cally generate a controller that can replicate the
movements. This step can be accomplished us-
ing modern machine learning techniques. Imita-
tion learning allows robots to learn the observed
behavior and have a good starting point for self-
improvement. This so called self-improvement
of the task can help the robot adapt the learned
movement to the characteristics of its own body
or the requirements of the current context. Hence,
even if the examples presented by humans are
not optimal, the robot can still use them to boot-
strap its behavior. In our lab, imitation learning
has already been used to teach complex motor
skills to various kinds of robots. This includes
skills such as grasping of novel objects [239, 574,
575], robot table tennis [48, 581], ball-in-the-cup
[178], throwing & catching [144, 467, 499], and
tether ball [455, 465]. Our work on grasping
won the ICINCO 2010 Best Paper Award. New
machine learning methods that can acquire mo-
tor skills faster are developed. The goal of this
research is to have intelligent robots that can au-
tonomously enlarge their repertoire of skills by
observing or interacting with human teachers.

However, supervised learning is not always
suf�cient for motor learning problems, partly be-
cause an expert teacher or idealized version of
the behavior is often not available. Accordingly,
one of our goals is the development of reinforce-
ment learning methods which can handle the
dimensionality of humanoid robots and generate
actions for seven or more degrees of freedom.
Ef�cient reinforcement learning for continuous
states and actions is essential for robotics and
control [683]. For high-dimensional state and
action spaces, it is often easier to directly learn
policies without estimating accurate system mod-
els. The resulting algorithms are parametric pol-
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icy search algorithms inspired by expectation-
maximization methods and can be employed
for motor primitive learning [144, 178, 465].
Our resulting approach [465] has won the IROS
2012 Best Cognitive Paper, and was both IROS
2012 Best Student Paper Finalist and Best Paper
Award Finalist.

Our work on reinforcement learning (RL)
also comprises algorithmic and theoretical de-
velopments that are of independent interest.
In this context, signi�cant progress has been
made regarding new information theoretic RL
approaches [218, 508, 586], hierarchical RL
approaches [455], as well as structured ap-
proaches [463]. We also studied theoretical foun-
dations for Bayesian RL approaches [540] and
the analysis of reinforcement learning algorithms
in the bandit setting [536] and within inverse re-
inforcement learning [508].

Machine Learning in Neuroscience The
neurosciences present some of the steepest chal-
lenges to machine learning. Nearly always there
is a very high-dimensional input structure — par-
ticularly relative to the number of exemplars,
since each data point is usually gathered at a
high cost. To avoid over�tting, inference must
thus make considerable use of domain knowl-
edge. Relevant regularities are often subtle, the
rest being made up of noise that may be of much
larger magnitude (often composed largely of the
manifestations of other neurophysiological pro-
cesses, besides the ones of interest). In �nding
generalizable solutions, one usually has to con-
tend with a high degree of variability, both be-
tween individuals and across time, leading to
problems of covariate shift and non-stationarity.

One speci�c neuroscienti�c application area
in which we have a long-standing interest is that
of brain-computer interfacing, or BCI (see page
30). This research aims to construct systems that
replace and rehabilitate lost communication and
motor skills in patient populations. The contribu-
tion of machine learning to BCI is in developing,
re�ning, and applying algorithms to improve the
accuracy with which neural signals are decoded.
Our algorithmic developments ([13, 186, 187,
283, 560]) as well as improvements in experi-
mental methodology (for example, as described
in [137, 223, 298]) are signi�cant contributions
towards making clinical BCI systems a reality.

In addition to the advancement of methods

for brain decoding, further progress in this �eld
is contingent on a better understanding of the
neural basis of BCI control. Research has largely
focused on neural signals that provide informa-
tion on a subject's intent, neglecting those pro-
cesses that determine whether a subject is in
a state of mind suitable for operating a BCI.
In collaboration with the Institute of Medical
Psychology and Behavioral Neurobiology at the
University of Tübingen, we have studied the
neuro-physiological causes of good and poor
BCI-control in healthy subjects and patient pop-
ulations. This work has provided insights into
the relation of attention networks and BCI-
performance [149, 174], as recognized by the
annualInternational BCI Research Award 2011,
and has led to a new class of cognitive BCI
paradigms for patients in late stages of amy-
otrophic lateral sclerosis (ALS) [81, 346].

Our interest in interfacing with the brain is
not con�ned to communication. We are further
exploring the use of BCI systems as assistive
devices in stroke rehabilitation. Online decod-
ing of movement intent in severely disabled pa-
tients can be employed to deliver congruent hap-
tic feedback through robotic devices, thereby
re-establishing the disrupted sensorimotor feed-
back loop. This synchronization may support
cortical reorganization, hopefully resulting in en-
hanced recovery [183]. We have developed a
BCI-controlled robotic system in collaboration
with the Neurosurgery Department at the Univer-
sity of Tübingen, and demonstrated the feasibil-
ity of real-time haptic feedback on movement in-
tent in healthy subjects and stroke patients [194].

We have also designed machine learning tech-
niques to assist with the interpretation of exper-
imental brain data (see page31). Unsupervised
learning tools were designed to automatically
identify key events in large neural recordings,
and were an integral part of several high-impact
publications on memory-triggering events [25,
160]. Finding causal relationships between neu-
ral processes is also of particular interest to neu-
roscientists, but hard to address in living neural
systems due to ethical and practical concerns.
We have been developing causal inference tools
adapted to these challenges [46, 174, 224, 353],
and this work led to signi�cant neuroscienti�c
�ndings such as the role of traveling electrical
waves in routing sensory information across the
visual cortex [34]. Machine learning also pro-
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vided theoretical insights into biological learning
by showing that observed properties of synaptic
plasticity are optimal for neurons to learn under
metabolic constraints imposed by limited ener-
getic resources [95, 473].

We conclude this section with a short sum-
mary of our contributions to cognitive science
and vision research, performed in collaboration
with Felix Wichmann, professor of computa-
tional neuroscience at the local University Tübin-
gen and part-time member of our department. In
one line of work, we use machine learning to
uncover the behaviorally relevant features ob-
servers use in complex perceptual tasks: given
high-dimensional sensory input, which are the
features that sensory systems base their computa-
tions on? We have applied our methods success-
fully to visual saliency [290], gender discrimina-
tion [242], and auditory tone-in-noise detection
[148]. We have also published a discussion of
the application of kernel methods in the �agship
journal of cognitive science [289]. A second fo-
cus is the development of a predictive image-
based model of spatial vision. We integrated
the large psychophysical literature on simple de-
tection and discrimination experiments and pro-
posed a model based on maximum-likelihood de-
coding of a population of model neurons [108].

Bioinformatics In the past, the department
was active in several branches of computational

biology. While these activities have been signi�-
cantly reduced, they overlapped with the report-
ing period and will thus brie�y be included.

Genetics has witnessed an impressive increase
in datasets that contain detailed information both
about the genetic properties of individuals and
their appearance properties, that is about their
genotypeand phenotype. Large genetics con-
sortia around the world are recording single-
nucleotide polymorphisms (SNPs), i.e., single
genome bases that differ between individuals, for
large sets of individuals. The standard technique
is then to compute which of these105 to 107

genome positions correlate most strongly with
the disease status. Due to the enormous compu-
tational costs that an exhaustive scan for, say,
1014 candidate pairs would entail, these studies
usually ignore any interactive effect between ge-
nomic loci, although these are believed to be
important in many diseases. We have developed
new engineering approaches and mathematical
results to tackle this fundamental computational
problem in Statistical Genetics [513].

Another recent area in Computational Biology
is Molecular Genomics, in which new sequenc-
ing technologies enable an unprecedented wealth
of data for exploring the structure of the genome
and of individual genes. We have developed sev-
eral tools to detect genes within the genome, and
to establish a �ne-grained picture of gene struc-
ture and of the impact of sequence variation on
gene expression levels [312, 313, 650].
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Learning theory

Machine learning algorithms are designed to
yield accurate predictions on future data by gen-
eralizing from past observations. The main goal
of learning theory is to analyze their statistical
and computational properties, and to provide per-
formance guarantees on the new data. To do so,
it poses these tasks in a rigorous mathematical
framework and deals with them under various
assumptions on the data-generating process.

PAC-Bayesian analysis (Probably Approx-
imately Correct) provides guarantees on the
generalization ability of randomized predictors
within the classical PAC framework. We derived
general PAC-Bayesian inequalities which allow
to control the concentration of weighted aver-
ages of possibly uncountably many simultane-
ously evolving and interdependent martingales
[138]. We applied these inequalities tocontex-
tual bandits providing a new regret bound and
learning algorithm [536].

We have studied the relations and differences
betweenVapnik-Chervonenkis (VC) andPop-
per's dimensions. While both VC and Popper's
dimensions aim to quantify the process of falsi�-
cation, the �rst focuses on passive falsi�cation
based on examples provided by nature, whereas
the latter focuses on active falsi�cation through
experiment design. We have shown that concepts
that are related to Popper's notion of falsi�abil-
ity occur in the domain of query-learning and
derived relations between Popper's, exclusion,
and VC-dimension [677].

We have analyzed how the performance of
learning algorithmsadapts to local structure
in the data, which often helps when the ambient
dimension is huge. We established that certain
regression procedures, such as kernel and k-NN
regression, adapt to a locally low intrinsic dimen-
sion [439, 546]. Further, we have shown how to
improve regression performance by adapting the
learning process to differing variability in vari-
ous coordinates of the function to be estimated
[481]. For this, we proposed a novel, consistent
estimator for gradient norms. We also developed
new data-structures for regression in a streaming

setting [440].

We showed the �rst statistical consistency re-
sult (under surprisingly general distributional
conditions) for additive noise methods incausal
inference[400]. Further, we posed the problem
of cause-effect inference as binary classi�ca-
tion of probability measures, proposed a com-
putationally ef�cient algorithm based on kernel
mean embeddings achieving state-of-the-art per-
formance, and provided a risk bound for the ap-
proach [356] .

In transductive learning the learner observes
labeled training and unlabeled test points with
the �nal goal of correctly labeling the test points.
We have introduced a new complexity mea-
sure of function classes called Permutational
Rademacher Complexity, argued that it is bet-
ter suited for analysis of transductive learning
than other popular measures of complexity, and
derived a general risk bound for transductive al-
gorithms based on it [342].

Active learning exploits structure and infor-
mation in unlabeled data to save label supervi-
sion. The goal is to ask for only a small sub-
set of the data to be labeled while maintaining
good performance. We provided novel statistical
guarantees for a large class of practical cluster-
based active learning procedures [340]. We fur-
ther showed that an algorithmic technique from
margin-based active learning yields a compu-
tationally ef�cient learner for linear separators
under conditions that had earlier been shown to
allow for fast statistical learning rates (Massart
noise condition) [339].

We also provided a �rst formal analysis of the
use of active learning fordomain adaptation,
that is, to use a learner's active querying abil-
ity to adapt to changes in the data generation.
We proposed a new active learning strategy and
proved that it consistently learns in situations
where no passive learning algorithm is consis-
tent, while automatically adapting its amount of
label queries to what is needed due to the under-
lying data shift [341].

More information:https://ei.is.tuebingen.mpg.de/project/learning-theory
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Random geometric graphs

Figure 1.1: Left: Shortest path (in red) in an unweighted k-nearest neighbor graph on a random set of points. The
path is far from the straight line between the two end points. Middle and right: a toy data set (middle) and its Isomap
reconstruction based on the shortest path distance in the unweighted kNN graph. The reconstrution does not
preserve the density information of the original data set.

Random geometric graphsare built by �rst
sampling a set of points from some underlying
distribution, and then connecting each point to
its k nearest neighbors. In this project we inves-
tigated the behavior of distance functions on ran-
dom geometric graphs when the sample sizen
goes to in�nity (and the connectivity parameter
k scales appropriately).

It is well known that in graphs where the
edges are suitably weighted according to their
Euclidean lengths, theshortest path distance
converges to the underlying Euclidean distance.
However, it turned out this is not the case for
unweighted kNN graphs [461]. In this case, the
shortest path distance converges to a distance
function that is weighted by the underlying den-
sity and takes wide detours to avoid high density
regions (see left �gure above). In machine learn-
ing applications, this behavior of the shortest
path distance can be highly misleading. As an
example, consider the Isomap algorithm and the
data set shown in the middle �gure. If we build
an unweighted kNN graph based on this data and
apply Isomap to recover the point con�guration,
we get the �gure on the right. Obviously, it is
grossly distorted and cannot serve as a faithful
representation of the original data.

The commute distance(akaresistance dis-
tance) between vertexu andv is de�ned as the

expected time it takes the natural random walk
starting in vertexu to travel to vertexv and back.
It is widely used in machine learning because it
supposedly satis�es the following, highly desir-
able property: Vertices in the same cluster of the
graph have a small commute distance, whereas
vertices in different clusters of the graph have a
large commute distance to each other. We studied
the behavior of the commute distance as the num-
ber of vertices in the graph tends to in�nity [599],
proving that the commute distance between two
points converges to a trivial quantity that only
takes into account the degree of the two vertices.
Hence, all information about cluster structure
gets lost when the graph is large enough.

To alleviate this shortcoming, we proposed
the family ofp-resistances[497]. For p = 1 it
reduces to the shortest path distance, forp = 2
it coincides with the resistance distance, and for
p ! 1 it is related to the minimals-t-cut in
the graph. The family shows an interesting phase
transition: there exist two critical thresholdsp�

andp�� such that ifp < p � , then thep-resistance
depends on meaningful global properties of the
graph, whereas ifp > p �� , it only depends on
trivial local quantities and does not convey any
useful information. In particular, thep-resistance
for p = p� nicely reveals the cluster structure.

More information:https://ei.is.tuebingen.mpg.de/project/distance-functions-on-random-geometric-graphs
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Kernel methods

Figure 1.2: Overview of the application of kernel mean embedding in [43]. Together with the reduced set (RS)
techniques to limit the complexity of the RKHS expansion, the kernel mean embedding is used to approximate the
embedding of the functional of random variables Z = f (X; Y ).

A Hilbert space embedding of distributions
(KME)—which generalizes the feature map of
individual points to probability measures—has
emerged as a powerful machinery for probabilis-
tic modeling, machine learning, and causal dis-
covery. The idea behind this framework is to map
distributions into a reproducing kernel Hilbert
space (RKHS) endowed with a kernelk. It en-
ables us to apply RKHS methods to probability
measures and has given rise to a great deal of re-
search and novel applications of kernel methods.

Given an i.i.d. samplex1; x2; : : : ; xn from
P, the most natural estimate of the embedding
� P = EP[k(X; �)] is an empirical averagê� P =
(1=n)

P n
i =1 k(x i ; �). In [35, 370], we showed

that this estimator is not optimal in a certain
sense. Inspired by James-Stein estimator, we
proposed the so-called kernel mean shrinkage
estimators (KMSEs) which improves upon the
standard estimator. A suitable explanation for
the improvement is a bias-variance tradeoff: the
shrinkage estimator reduces variance substan-
tially at the expense of a small bias. In addition,
we presented a class of estimators called spectral
shrinkage estimators in [395] which also incorpo-
rates the RKHS structure via the eigenspectrum
of the empirical covariance operator. Our empir-
ical studies suggest that the proposed estimators
are very useful for “largep, smalln” situations
(e.g. medical data, gene expression analysis, and
text documents).

A natural application of KME is in testing for
similarities between samples from distributions.
We refer to the distance between two distribu-
tion embeddings as the maximum mean discrep-
ancy (MMD). We have formulated a two-sample
test [142] (of whether two distributions are the
same), and showed that the independence test (of
whether two random variables observed together

are statistically independent) is a special case.
A further application of the MMD as indepen-
dence criterion is in feature selection, where we
maximize dependence between features and la-
bels [143]. We have further developed alternative
independence tests based on space partitioning
approaches and classical divergence measures
(such as thè 1 distance and KL-divergence)
[268]. Lastly, we also constructed the test for
non-i.i.d. data such as time-series in [441].

Given that the MMD depends on the particular
kernel that is chosen, we proposed two kernel se-
lection strategies [494], the earlier one relying on
a classi�cation interpretation of the MMD, and
the later one explicitly minimizing the probabil-
ity of Type II error of the associated two-sample
test (that is, the probability of wrongly accepting
that two unlike distributions are the same, given
samples from each).

We have also used the KME to develop a vari-
ant of an SVM which operates on distributions
rather than points [478], permitting modeling
of input uncertainties. One can prove a gener-
alized representer theorem for this case, and in
the special case of Gaussian input uncertainties
and Gaussian kernel SVMs, it leads to a multi-
scale SVM, akin to an RBF network with vari-
able widths, which is still trained by solving a
quadratic optimization problem. In [356], we ap-
plied this framework to perform bivariate causal
inference betweenX andY as a classi�cation
problem on joint distributionP(X; Y ). Another
interesting application is in domain adaptation
[407, 676]. This idea has also been extended to
develop a variant of One-class SVM that oper-
ates on distributions, leading to applications in
group anomaly detection [415].

A recent application uses kernel means in visu-
alization. When using a power-of-cosine kernel
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for distributions on the projective sphere, the
kernel mean can be represented as a symmet-
ric tensor. In the context of diffusion MRI, this
permits an ef�cient visual and quantitative anal-
ysis of the uncertainty in nerve �ber estimates,
which can inform the choice of MR acquisition
schemes and mathematical models [110, 388].

A natural question to consider is whether the
MMD constitutes a metric on distributions, and
is zero if and only if the distributions are the
same. When this holds, the RKHS is said to be
characteristic. We have determined necessary
and suf�cient conditions on translation invari-
ant kernels for injectivity, for distributions on
compact and non-compact subsets ofRd [253]:
speci�cally, the Fourier transform of the ker-
nel should be supported on all ofRd. Gaus-
sian, Laplace, and B-spline kernels satisfy this
requirement. The MMD is a member of a larger
class of metrics on distributions, known as the
integral probability metrics (IPMs). In [16, 4],
we provide estimates of IPMs onRd which are
taken over function classes that are not RKHSs,
namely the Wasserstein distance (functions in the
unit Lipschitz semi-norm ball) and the Dudley
metric (functions in the unit bounded Lipschitz
norm ball), and establish strong consistency of
our estimators. Comparing the MMD and these
two distances, the MMD converges fastest, and
at a rate independent of the dimensionalityd of
the random variables – by contrast, rates for the
classical Wasserstein and Dudley metrics worsen
whend grows.

Embeddings of distributions can be general-
ized to yield embeddings of conditional distribu-
tions. The �rst application is to Bayesian infer-
ence on graphical models. We have developed
two approaches: in the �rst [556, 602], the mes-
sages are conditional density functions, subject
to smoothness constraints; these were orders of
magnitude faster than competing nonparamet-
ric BP approaches, yet more accurate, on prob-
lems including depth reconstruction from 2-D
images and robot orientation recovery. In the
second approach [558], conditional distributions
P(Y jX = x) are represented directly as embed-
dings in the RKHS, allowing greater generality
(for instance, one can de�ne distributions over
structured objects such as strings or graphs, for
which probability densities may not exist). We

showed the conditional mean embedding to be
a solution to a vector valued regression prob-
lem [492], which allows us to formulate sparse
estimates. The second application is to reinforce-
ment learning. In [491], we estimate the optimal
value function for a Markov decision process
using conditional distribution embeddings, and
the associated policy. This work was general-
ized to partially observable Markov decision pro-
cesses in [462], where the kernel Bayes' rule was
used to integrate over distributions of the hidden
states.

Another important application of conditional
mean embeddings is in testing for conditional
independence (CI). We proposed a Kernel-based
Conditional Independence test (KCI-test) [519]
which avoids the classical drawbacks of CI test-
ing. Most importantly, we further derived its
asymptotic distribution under the null hypoth-
esis, and provided ways to estimate such a dis-
tribution. Our method is computationally appeal-
ing and is less sensitive to the dimensionality
of Z compared to other methods. This is the
�rst time that the null distribution of the kernel-
based statistic for CI testing has been derived.
Recently, we proposed a new permutation-based
CI test [390] that easily allows the incorporation
of prior knowledge during the permutation step,
has power competitive with state-of-the-art ker-
nel CI tests, and accurately estimates the null
distribution of the test statistic, even as the di-
mensionality of the conditioning variable grows.

Lastly, we have recently leveraged the KME
in computing functionals of random variables
Z = f (X 1; X 2; : : : ; X n ) [43], which is ubiqui-
tous in various applications such as probabilistic
programming. Our approach allows us to obtain
the distribution embedding ofZ directly from
the embeddings ofX 1; X 2; : : : ; X n without re-
sorting to density estimation. It is in principle
applicable to all functional operations and data
types, thank to the generality of kernel methods.
Based on the proposed framework, we showed
how it can be applied to non-parametric struc-
tural equation models, with an application to
causal inference. As an aside, we have also de-
veloped algorithms based on distribution embed-
ding for identifying confounders [422], which is
one of the most fundamental problems in causal
inference.

More information:https://ei.is.tuebingen.mpg.de/project/kernel-distribution-embeddings
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Optimization and large scale learning

Optimization lies at the heart of most machine
learning algorithms. The key aspects of the ap-
plications in which these algorithms are applied
include: high-dimensional, noisy, and uncertain
data; huge volumes of batch or streaming data;
intractable models, low accuracy, and reliance
on distributed computation or stochastic approx-
imations. The success of most machine learn-
ing algorithms depends on how the optimization
techniques can adapt and exploit these facets.
Our interests are broadly divided into two cate-
gories, convex and non-convex methods.

Figure 1.3: The Rosenbrock function, a non-convex func-
tion which serves as a test-bed for optimization algo-
rithms (�gure taken from Wikipedia)

Convex optimization In the realm of meth-
ods for convex optimization, we have addressed
research challenges under various different prob-
lem settings. For large-scale problems, where
scalability is an important aspect, a summary
overview of large-scale aspects of convex op-
timization appears in our work [678]. A theo-
retically optimal large-scale convex method for
problems with linear constraints is presented in
[366] which develops a new stochastic alternat-
ing direction method of multipliers (ADMM)
method that combines Nesterov's accelerated
gradient methods with ADMM.

For learning classi�ers in extremely large out-
put spaces, we have proposed a parallelizable
mixed-norm regularization approach leading to
convex but non-smooth optimization in our re-
cent work [316]. We show that the resulting mod-
els can be orders of magnitude smaller than most
state-of-the-art methods and also lead to better

generalization performance.

A contribution that lies at the interface of com-
binatorial and convex optimization is presented
in [444]. General purpose convex methods of-
ten rely on key subroutines such as projection
and proximity operators. Continuing our effort
from the previous SAB assessment towards de-
veloping a library of highly tuned subroutines,
e.g., for total variation, we extend to multivariate
total variation in [365]. A �ourishing sub-�eld
of convex optimization is “Robust optimization”
which seeks to optimize models under parame-
ters/data uncertainty. It intersects with the usual
min-max theory in statistics, and can be used
to offer a different view of regularization in ma-
chine learning. In [30], we introduced the no-
tion of robust optimization for matrix comple-
tion/recovery problems. The actual application
was to recover correlation matrices under a sim-
ple bounded uncertainty model.

Non-convex OptimizationIn the domain of
non-convex optimization for large-scale prob-
lems, our work [673] presents a simpli�ed anal-
ysis of what, to our knowledge, is the �rst
non-convex, non-smooth incremental proximal
method. This work started in 2011; interestingly,
in recent years, the interest in incremental meth-
ods has sky-rocketed, though the analysis is lim-
ited only to the convex case. Finally, we mention
a new direction in nonconvex optimization of-
fered by our recent work [443], which introduces
"Geometric optimization" on the manifold of
positive de�nite matrices. The underlying idea is
to develop a theory of convexity along geodesics
on the Positive Semi-De�nite manifold. This
work also identi�es some basic calculus rules for
detection and construction of geodesically con-
vex functions on the Positive De�nite manifold,
and as an application presents new algorithms
for solving maximum likelihood estimation for
elliptically contoured distributions, which de-
spite non-convexity remain tractable thanks to
geodesic convexity.

More information:https://ei.is.tuebingen.mpg.de/project/optimization-and-large-scale-learning
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Structure and dynamics of diffusion networks

We are interested in developing machine learn-
ing and large-scale data mining methods for
the analysis, modeling and control of large real-
world networks and processes that take place
over them. We addressed mainly two problems:
network inference and in�uence maximization.

Network inference Observing a diffusion
process often reduces to noting when nodes (peo-
ple, blogs, etc.) reproduce a piece of informa-
tion, get infected by a virus, or buy a product.
Epidemiologists can observe when people be-
come ill but they cannot tell who infected them
or how many exposures and how much time was
necessary for the infection to take hold. In in-
formation propagation, we observe when a blog
mentions a piece of information. However if, as
is often the case, the bloggers do not link to their
sources, we do not know where they acquired
the information or how long it took them to post
it. Finally, viral marketers can track when cus-
tomers buy products or subscribe to services,
but typically cannot observe who in�uenced cus-
tomers' decisions, how long they took to make
up their minds, or when they passed recommen-
dations on to other customers. We observe where
and when but not how or why information (be
it in the form of a virus, a meme, or a decision)
propagates through a population of individuals.
The mechanism underlying the process is hid-
den. However, the mechanism is of outstanding
interest, since understanding diffusion is neces-
sary for stopping infections, predicting meme
propagation, or maximizing sales of a product.

In our work, we formulated a generative prob-
abilistic model of diffusion that aims to describe
realistically how diffusion occurs over time in
a network. First, we developed two algorithms,
NetInf [133, 566] and MultiTree [457], which
use submodular optimization to infer the struc-
ture of a diffusion network from diffusion traces.
We demonstrate the effectiveness of our algo-
rithm by tracing information cascades in a set
of 170 million blogs and news articles from 3.3

million sites over a one year period. We �nd that
the diffusion network of news tends to have a
core-periphery structure with a small set of core
media sites that diffuse information to the rest of
the Web.

However, both algorithms force the transmis-
sion rates between all nodes to be �xed and static
– and not inferred. To overcome this limitation,
we then developed the algorithm NetRate [69,
375, 418, 512], which allows transmission at
different rates across different edges, possibly
time-varying, so that we can infer temporally
heterogeneous interactions within a network. Ne-
tRate infers both structure and the temporal dy-
namics of the underlying network with provable
guarantees using convex optimization. We study
the evolution of information pathways in the on-
line media space and �nd that information path-
ways for general recurrent topics are more stable
across time than for on-going news events. Clus-
ters of news media sites and blogs often emerge
and vanish in matter of days for on-going news
events. Major events involving civil population,
such as the Libyan's Civil War, lead to an in-
creased amount of information pathways among
blogs as well as in the overall increase in the net-
work centrality of blogs and social media sites.

In�uence maximization In this problem, one
aims to select the most in�uential source node
set of a given size in a diffusion network. A diffu-
sion process that starts in such an in�uential set
of nodes is expected to reach the greatest number
of nodes in the network. Although the problem
depends dramatically on the underlying temporal
dynamics of the network, this was largely unex-
plored. In our work, we developed an in�uence
estimation, In�uMax [458], which accounts for
the temporal dynamics underlying diffusion pro-
cesses [512]. Later, we developed a very ef�cient
in�uence estimation method, ContInEst [429],
which can be used in combination with In�uMax
to scale up in�uence maximization to networks
with million of nodes.

More information:https://ei.is.tuebingen.mpg.de/project/structure-and-dynamics-of-diffusion-networks
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Causal Inference

Figure 1.4: Visualization of a technique called “half-sibling regression” which corrects measurement errors. Mea-
suring X allows us to remove parts of the systematic noise N from Y , which yields a better estimation of Q (the
quantity of interest).

Causal DiscoveryIn causal discovery, we try
to learn a causal structure from data. This struc-
ture may be a directed acyclic graph (DAG) un-
derlying a functional causal model (FCM), and
possibly also the functions in the FCM. Without
further assumptions, this goal is impossible to
achieve: given only an observational distribution
P, we can �nd an FCM generatingP for any
graphG s.t. P is Markovian w.r.t.G, i.e., the
underlying graph is not identi�able. We inves-
tigate assumptions that make the graph identi-
�able from the observational distribution, and
develop algorithms building on those assump-
tions. We now provide some examples, and refer
to the literature for further papers that we cannot
discuss below [353, 358, 401, 422, 518].

Example (1): Additive Noise Models.In ad-
ditive noise models, the functional assignments
used in the FCM are of the formZ = f (X; Y )+
N . The subclass of linear functions and additive
Gaussian noise does not lead to identi�ability.
This, however, constitutes an exceptional setting.
If one assumes either (i) non-Gaussian noise, (ii)
non-linear functions in the FCM [84, 624] or (iii)
all noise variables to have the same variance, one
can show that additive noise models are identi-
�able. Methods that are based on additive noise
models perform above chance level not only on
arti�cal data but also on the set of cause-effect
pairs that we have collected over the last years
[36]. A similar result holds if all variables are
integer-valued [585] or if we interpret the addi-
tivity in Z=kZ [200]. The concept of additive
noise has been extended to time series, too [438],
as well as to the identi�cation of confounders

[625].
Example (2): Information Geometric Causal

Inference (IGCI).While the above methods in-
herently rely on noisy causal relations, statisti-
cal asymmetries between cause and effect also
appear for deterministic relations. We have con-
sidered the case whereY = f (X ) andX =
f � 1(Y ), for some invertible functionf , the task
being to tell which variable is the cause. The gen-
eral assumption of independence of causal mech-
anisms [234] implies thatP(X ) andP(Y jX )
should be independent ifX causesY . Choosing
P(X ) andf independently implies thatP(Y )
tends to have high probability density in regions
where f � 1 has large Jacobian. This observa-
tion can be made precise within an informa-
tion theoretic framework [134, 562]. Applying
a non-linearf to P(X ) decreases entropy and
increases the relative entropy distance to Gaus-
sians, provided that a certain independence be-
tweenf andP(X ) is postulated which can be
phrased as orthogonality in information space.

A second approach, for linear invertible rela-
tions between multi-dimensional variables, is re-
lated in spirit: if the covariance matrix ofX and
the structure matrix relatingX andY are chosen
independently, directions with high covariance
of Y tend to coincide with directions correspond-
ing to small eigenvalues ofA � 1, which can be
checked by a formula relating traces of covari-
ance matrices with traces of the product of struc-
ture matrices with their transpose [518, 571].

Example (3): Invariant Prediction.In many
situations, we are interested in the system's be-
havior under a change of environment. Here,
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causal models become important because they
are often invariant under those changes [470].
Following the assumption of independence of
causal mechanisms, localized changes of some
noises or mechanisms of a causal model will of-
ten leave other conditionals invariant, and thus a
causal prediction (which uses only direct causes
of the target variable as predictors) may remain
valid even if we intervene on predictor vari-
ables or change the experimental setting. We
can exploit this for causal discovery: given data
from different experimental settings, we use in-
variance as a criterion to estimate the set of
causal predictors for a given target variable. This
method also leads to valid con�dence intervals
for causal relations [20].

Example (4): Hidden Confounding in Time
Series.Assume we are given a multivariate
time seriesX 1; : : : ; X L of measurements. In this
project, our goal is to infer the causal structure
underlyingX 1; : : : ; X L , in spite of a potential
unobserved confounder(Z t )t2 Z (which other ap-
proaches such as Granger causality cannot han-
dle). We assume a vector autoregressive causal
model

�
X t

Z t

�
:=

�
B C
D E

� �
X t � 1

Z t � 1

�
+ N t :

Restricting the model class to non-Gaussian in-
dependent noise(N t )t2 Z makesB andC essen-
tially identi�able [351]. We show thatD = 0 is
another suf�cient restriction of the model class.

Example (5): Causal Strength.In real-world
applications a measure of thestrengthof a causal
in�uence is often required. This is a challeng-
ing question, even if the causal directed acyclic
graph and the joint distribution are perfectly
known. We have formulated a set of postulates
that a measure of causal strength of an arrow (or
of a set of arrows) in a causal network should sat-
isfy [94]. We show that none of the measures in
the literature satis�es all postulates, and describe
examples where they therefore lead to poor re-
sults. This includes well-known approaches like
Granger causality and transfer entropy for time
series, and also measures for general graphs. The
main problem is to quantify which part of the
statistical dependences between two variables is
due to a direct causal in�uence of one on the

other, and which part is due to other causal paths.
We propose an information-theoretic measure
that satis�es all our postulates. It coincides with
mutual information for a DAG with two nodes;
for more complex DAGs it correctly removes the
information propagated via alternative paths.

Causal Inference in Machine LearningWe
believe that causal knowledge is not only useful
for predicting the effect of interventions, but that
in some scenarios causal ideas can also improve
the performance of classical machine learning
methods. Again, we concentrate only on two ex-
amples and refer to some other papers [90, 470].

Example (6): Semi-supervised Learning.Our
work [470] discusses several implications of the
independence of cause and mechanism (as a spe-
cial case of a more general independence prin-
ciple) for standard machine learning. Let us as-
sume thatY is predicted fromX . We have ar-
gued that semi-supervised learning (SSL) does
not help ifX is the cause ofY (“causal learn-
ing”), whereas it often helps ifY is the cause of
X (“anticausal learning”). This is because addi-
tional observations ofX only tell us more about
P(X ) – which is irrelevant in the case of causal
prediction because the prediction requires infor-
mation about theindependentobjectP(Y jX ).
Our meta-study analyzing results reported in the
SSL-literature supports this hypothesis: all cases
where SSL helped where anticausal, confounded,
or examples where the causal structure was un-
clear. To elaborate on the link between causal di-
rection and performance of SSL, we studied the
toy problem of interpolating a monotonically in-
creasing function for the case where the relation
betweenX andY is deterministic [24]. In such
a scenarioP(X ) can be shown to be bene�cial
for predictingY from X wheneverP(X jY ) and
P(Y ) satisfy a certain independence condition
which coincides with the one postulated in our
work on information-geometric causal inference
[134].

Figure1.4, �nally, visualizes the idea of a re-
cent method for correcting measurement errors
called “half-sibling regression:” subtracting the
conditional expectation ofY givenX from Y
can provide a better estimation of the quantityQ
of interest than the noisy measurementY , which
has been used in [349] to process astronomical
light curves for the detection of exoplanets.

More information:https://ei.is.tuebingen.mpg.de/project/causal-inference
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Probabilistic control

Figure 1.5: Systems of high variability can bene�t from probabilistic dual control. To illustrate this, 50 different
parameter sets (horizontal) are simulated for 5 different controllers (vertical). The colour indicates overall cost, from
dark blue (low) to dark red (high).

Uncertainties have long been recognized as
a key dif�culty for control, deteriorating perfor-
mance or even putting system safety at risk. This
issue has been classically addressed by robust
controller design, making use of a deterministic
bound on the uncertainty and designing the con-
troller for all possible uncertainty realizations.
Tight uncertainty bounds are, however, dif�cult
to obtain, limiting performance in practice, and
robust techniques generally suffer from signi�-
cant computational complexity.

The scope of this research is to develop new
methods and tools for high performance and
computationally ef�cient control of uncertain
complex systems. We take a probabilistic ap-
proach, considering that the uncertainty affecting
the system has a probabilistic nature. In contrast
to common stochastic control methods, a key
feature of the developed techniques is that they
enable an online identi�cation of the uncertainty
distribution to maximize system performance,
while providing (probabilistic) guarantees on the
closed-loop system characteristics. The methods
thereby leverage an interplay of probability, ro-
bustness, and adaption.

While uncertainties can enter controllers in
various forms, we focus on model-based control
techniques with model uncertainties due to high
system complexity or due to the environment.
The challenge is that learning happens in closed
loop, i.e., 1) the resulting model is directly crit-
ical for both performance and safety at every
time step and, 2) control and system identi�ca-
tion have to be performed simultaneously.

Learning-based model predictive control
Model predictive control (MPC) makes use of
predictions of the system and the environment in
order to optimally choose a sequence of control

inputs that provides safety in the form of stabil-
ity and constraint satisfaction and minimizes a
performance objective.

We investigate the use of learning-based iden-
ti�cation methods for integration in an MPC con-
troller, offering an ideal framework to incorpo-
rate probabilistic predictions based on online
data. Due to their �exibility, Gaussian processes
(GP) are used to model complex system behav-
iors and, most importantly, characterize the cor-
responding model uncertainty. The work [16]
proposed a modeling and control approach us-
ing Gaussian processes to predict time-periodic
errors that are then compensated by a predic-
tive controller, which was demonstrated for high
precision control of a telescope mount.

Dual control A key challenge of simultane-
ous control and system identi�cation is that the
control action in�uences not only the perfor-
mance, but also the uncertainty in the dynamics.
This is also called the exploration-exploitation
trade-off. Dual control offers one way to address
this trade-off by considering the control of the
dynamical system augmented by the unknown
parameters. While the exact dual controller is
intractable, available approximations generally
cannot maintain all core features: caution, explo-
ration and the future value of information.

We have derived a tractable approximation of
the dual control formulation that aims at main-
taining these features, in particular the value of
information, and have extended the technique to
general nonlinear systems. The developed dual
control framework has been applied in simula-
tion to the problem of building control, providing
simultaneous identi�cation and control guided
by electricity prices, weather, and occupancy.

More information:https://ei.is.tuebingen.mpg.de/project/probabilistic-control
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Probabilistic numerics

Arti�cial intelligent systems build models of
their environment from observations, and choose
actions that they predict will have bene�cial ef-
fect on the environment's state. The mathemati-
cal models used in this process call for computa-
tions that have no closed analytic solution. Learn-
ing machines thus rely on a whole toolbox of nu-
merical methods: high-dimensionalintegration
routines are used for marginalization and condi-
tioning in probabilistic models. Fitting of param-
eters poses nonlinear (often non-convex)opti-
mizationproblems. Predicting dynamic changes
in the environment involves solvingdifferential
equations. In addition, there are special cases
for each of these tasks in which the computa-
tion amounts to large-scalelinear algebra(i.e.
Gaussian conditioning, least-squares optimiza-
tion, linear differential equations). Traditionally,
machine learning researchers have served these
needs by taking numerical methods “off the shelf”
and treating them as black boxes.

Since the 1970s, researchers like Wahba, Dia-
conis, and O'Hagan repeatedly pointed out that,
in fact, numerical methods can themselves be in-
terpreted as statistical rules—more precisely, as
acting machines, since they take decisions about
which computations to perform: they estimate
an unknown intractable quantity given known,
tractable quantities. For example, an integration
method estimates the value of an integral given
evaluations of the integrand. This is an abstract
observation, but Diaconis and O'Hagan sepa-
rately made a precise connection between infer-
ence and computation in the case of integration:
several classic quadrature rules, e.g. the trape-
zoid rule, can be interpreted as the maximum a
posteriori (MAP) estimator arising from a family
of Gaussian process priors on the integrand.

Over recent years, the research group on prob-
abilistic numerics has been able to add more

such bridges between computation and inference
across the domains of numerical computation, by
showing that various basic numerical methods
are MAP estimates under equally basic proba-
bilistic priors: quasi-Newton methods, such as
the BFGS rule, arise as the mean of a Gaus-
sian distribution over the elements of the inverse
Hessian matrix of an optimization objective [91,
406, 448]. This result can be extended to linear
solvers [49], in particular the linear method of
conjugate gradients (Gaussian regression on the
elements of the inverse of a symmetric matrix).
Regarding ordinary differential equations, some
Runge-Kutta methods can be interpreted as au-
toregressive �lters [397], returning a Gaussian
process posterior over the solution of a differen-
tial equation.

The picture emerging from these connections
is a mathematically precise description of com-
putation as the active collection of information.
In this view, the analytic description of a numeri-
cal task provides a prior probability measure over
possible solutions, which can be concentrated
through conditioning on the result of tractable
computations. Many concepts and philosophical
problems from statistics carry over to computa-
tion quite naturally, with two notable differences:
�rst, in numerical “inference” tasks, the valid-
ity of the prior can be analyzed to a higher for-
mal degree than in inference from physical data
sources, because the task is speci�ed in a for-
mal (programming) language. Secondly, since
numerical routines are the bottom, “inner loop”
layer of arti�cial intelligence, they must curtail
computational complexity. This translates into a
constraint on acceptable probabilistic models—
most basic numerical methods make Gaussian
assumptions.

In the machine learning context, the descrip-
tion of computation as the collection of informa-
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tion has opened a number of research directions:
(1) Once it is clear that a numerical method

uses an implicit prior, it is natural to adapt this
prior to re�ect available knowledge about the
integrand. This design of “customized numerics”
was used in a collaboration with colleagues at
Oxford to build an ef�cient active integration
method that outperforms Monte Carlo integra-
tion methods in wall-clock time on problems of
moderate dimensionality [396].

(2) Many numerical problems are de�ned rel-
ative to a setup that is itself uncertain to be-
gin with. Once numerical methods are de�ned
as probabilistic inference, such uncertainty can
often be captured quite naturally. In a collabo-
ration with colleagues in Copenhagen, it was
shown [354, 369, 399] how uncertainty arising
from a medical imaging process can be prop-
agated in an approximate inference fashion to
more completely model uncertainty over neural
pathways in the human brain.

(3) Explicit representations of uncertainty can
also be used to increase robustness of a com-
putation itself. Addressing a pertinent issue in
deep learning, we constructed a line search
method [321]—a building block of nonlinear
optimization methods—that is able to use gradi-
ent evaluations corrupted by noise. The result-
ing method automatically adapts step sizes for
stochastic gradient descent.

(4) More generally, it is possible to de�ne
probabilistic numerical methods: Algorithms

that accept probability measures over a numeri-
cal problem as inputs, and return another proba-
bility measure over the solution of the problem,
which re�ects both the effect of the input un-
certainty, and uncertainty arising from the �nite
precision of the internal computation itself. A
position paper [37] motivates this class of algo-
rithms, and suggests their use for the control of
computational effort across composite chains of
computations, such as those that make up intel-
ligent machines. In collaboration with the Opti-
mization group at the German Cancer Research
Center we developed approximations to propa-
gate physical uncertainties through the optimiza-
tion pipeline for radiation treatment, to lower the
risk of complications for patients [111, 437].

In a separate but related development, a com-
munity has also arisen around the formulation of
global optimization as inference, and the formu-
lation of sample-ef�cient optimization methods.
TheseBayesian Optimizationmethods can, for
example, be used to structurally optimize and
automate the design of machine learning models
themselves. We contributed to this area with the
development of the Entropy Search [135] algo-
rithm that automatically performs experiments
expected to provide maximal information about
the location of a function's extremum.

Probabilistic numerics is emerging as a new
area at the intersection of mathematics, computer
science and statistics. As co-founders, the re-
search group on probabilistic numerics plays
a central role in its development. The wider
Intelligent Systems community, with their in-
tractably large data streams and non-analytic
model classes, are simultaneously contributors
and bene�ciaries: equipping computational rou-
tines with a meaningful notion of uncertainty
stands to increase both the ef�ciency and relia-
bility of intelligent systems at large.

More information:https://ei.is.tuebingen.mpg.de/project/probabilistic-numerics
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Computational photography

Figure 1.6: In many real-world imaging applications, the common assumption of stationary blur does not hold.
Examples that exhibit non-stationary blur include e.g. camera shake, optical aberrations, and atmospheric turbulence.
We derived a mathematically sound and physically well-motivated model, which allows to express and ef�ciently

compute spatially-varying blur [570] . Our “Ef�cient Filter Flow” framework substantially broadens the application

range of image deconvolution methods. In a number of challenging real-world applications [26, 320, 472, 535, 537,

570] we demonstrated both the validity and versatility of our approach.

Digital image restoration as a key area of sig-
nal and image processing aims at computation-
ally enhancing the quality of images by undoing
the adverse effects of image degradation such
as noise and blur. It plays an important role in
both scienti�c imaging and everyday photogra-
phy. Using probabilistic generative models of the
imaging process, our research aims to recover the
most likely original image given a low-quality
image, or image sequence. In the following we
give a number of illustrative examples to high-
light some of our work.

Spatially varying blurs: our work on blind
deconvolution of astronomical image sequences
[620] can recover sharp images through atmo-
spheric turbulence, but is limited to relatively
small patches of the sky, since the image defect
is modeled as a space-invariant blur. Images that
cover larger areas require a convolutional model
allowing for space-variant blur. In [570] we pro-
posed such a model based on a generalization of
the short-time Fourier transform, called Ef�cient
Filter Flow (EFF), which is illustrated in Fig.1.6.
Deconvolution based on EFF successfully recov-
ers a sharp image from an image sequences dis-
torted by air turbulence (see Fig.1.7).

Super-resolution:we generalized our online
method for themulti-frame blind deconvolution
problem [620] to account for the adverse ef-
fect of saturation and to enable super-resolution
given a sequence of degraded images [184].

By drawing a connection between Fraunhofer
diffraction and kernel mean maps we are able
to show that under certain imaging conditions
imaging beyond the physical diffraction limit is
in principle possible [423].

Removing camera shake:photographs taken
with long exposure times are affected by camera
shake creating smoothly varying blur. Real hand-
held camera movement involves both translation
and rotation, which can be modeled with our EFF
framework for space-variant blur [597]. We were
also able to recover a sharp image from a single
distorted image, using sparsity-inducing image
priors and an alternating update algorithm. The
algorithm can be made more robust by restricting
the EFF to blurs consistent with physical camera
shake [537]. This leads to higher image quality
(Fig. 1.8) and computational advantages. To fos-
ter and simplify comparisons between different
algorithms removing camera shake, we created
a public benchmark dataset and a comparison of
current methods [483].

Figure 1.7: Our Ef�cient Filter Flow model [ 570] com-
bined with our online multi-frame blind deconvolution
[620] allows to restore a single sharp image given a
sequence of blurry images degraded by atmospheric
turbulence.
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Figure 1.8: Example result of our proposed method for

fast removal of non-uniform camera shake [537]. The left
image shows the original image blurred due to camera
shake during exposure, the right image shows the result
of our proposed method.

Correcting lens aberration: even good
lenses exhibit optical aberration when used with
wide apertures. Similar to camera shake, this cre-
ates a certain type of blur that can be modeled
with our EFF framework; but optical aberrations
affects each color channel differently (chromatic
aberration). We measured these effects with a
robotic setup and corrected them using a non-
blind deconvolution based on the EFF frame-
work [535]. We were also able to implement
a blind method rectifying optical aberrations
in single images [472]. An example is shown
in Fig. 1.9. The key was to constrain the EFF
framework to rotationally symmetric blurs vary-
ing smoothly from the image center to the edges.
We have recently been able to formulate this as
non-parametric kernel regression, enabling faith-
ful optical aberration estimation and correction
[320], which might lead to new approaches in
lens design.

Figure 1.9: To test the capability of our approach to
optical aberration correction, we built a camera lens con-
taining a single glass element only. An example image
is shown on the left, which exhibits strong blur artifacts
especially towards the corners of the image. In contrast,
the restored image (right) is of high quality and demon-

strates that our method [472] is able to correct for most
degradations caused by optical aberrations from a single
input image only.

Denoising:another classical image distortion
is noise. Noise can exhibit different structure,
e.g., additive white Gaussian, salt-and-pepper,
JPEG-artifacts, and stripe noise, depending on
the application.

In astronomical imaging, dim celestial objects
require very long exposure times, which causes
high sensor noise. It is common to subtract a
dark frame from the image — an image taken
with covered lens, containing only sensor noise.
The dif�culty with this is that the sensor noise
is stochastic, and image information is not taken
into account. We studied the distribution of sen-
sor noise generated by a speci�c camera sen-
sor and proposed a parameterized model [538].
Combined with a simple image model for astro-
nomical images, this gives superior denoising.

Multi-scale denoising: noise usually has a
more damaging effect on the higher spatial fre-
quencies, so most algorithms focus on those.
However, if the noise variance is large, also
lower frequencies are distorted. We were able to
signi�cantly improve the performance of many
methods for that setting by de�ning a multi-scale
meta-procedure, leading to a DAGM 2011 prize
[539].

Figure 1.10: Schematic illustration of casting image
restoration as a learning problem. A neural network (mid-
dle) is trained with degraded/clean image pairs to learn
a mapping from a degraded image (left) to a restored
image with enhanced quality (right).

Image restoration as a learning problem:
since denoising can be also seen as a non-trivial
mapping from noisy to clean images as sketched
in Fig. 1.10, we were particularly interested
whether a learning-based approach can be ap-
plied. Using very large data sets, we trained
a multi-layer perceptron (MLP) that is able to
denoise images better than all existing meth-
ods, leading to the new state-of-the-art denoising
method [450].

Such a discriminative approach turned out to
be effective also for other image restoration tasks
such as inpainting [402], non-blind deconvolu-
tion [424], as well as blind image deconvolution
[26, 320].

More information:https://ei.is.tuebingen.mpg.de/project/computational-imaging
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Medical and neuroscienti�c imaging

Figure 1.11: Retrospective, fully data-driven removal of motion-related artefacts in 2D RARE images. Left: motion
corrupted image. Middle: reconstruction. Right: no-motion image.

Modern medical imaging is a blend of 20th
century breakthroughs in physics and informa-
tion processing. Although there is an ongoing
advancement of technology, many of the prob-
lems remain unsolved. Using machine learning
and image processing techniques for more ef�-
cient and intelligent use of acquired data seems
a promising solution to some of the obstacles.
For example, understanding the statistical prop-
erties of medical images allows making certain
prior assumptions on unobserved or corrupted
aspects of the data, which makes it possible to
improve the image quality and aid the medical
diagnostics.

PET-MR systems combine functional informa-
tion from Positron Emission Tomography (PET)
with structural information from Magnetic Reso-
nance (MR) Imaging. They demand PET attenu-
ation (or� ) map to be determined from MR data,
which constitutes an ill-posed problem. We have
developed a Gaussian process prediction frame-
work, trained on co-registered MR and� -maps,
and evaluated it on brain and whole body data. A
collaborative effort with the university hospital,
Tübingen, the method has been patented and li-
censed to Siemens AG. Further research focused
on evaluating the in�uence of positioning aids
[191], improving the robustness of the method

in presence of MR image artifacts [106] and the
assessment of PET quanti�cation accuracy in a
pediatric patient collective [28].

Patient motion during long MR scans leads
to severe non-local degradations and can render
images unacceptable for medical diagnosis. We
developed a retrospective (post-processing) ap-
proach called GradMC, which operates on the
motion-corrupted images [98]. It automatically
corrects for motion artifacts by searching for a
motion-generating function whose inverse ap-
plication optimizes a quality measure based on
image statistics. Our GPU implementation pro-
cesses a full 3D volume in a few minutes, which
is acceptable in routine clinical use. In a follow-
up work, we have come up with a fully retro-
spective non-rigid motion correction scheme that
only needs raw data as an input [50].

Diffusion MRI (dMRI) allows us to investi-
gate brain tissue microstructure non-invasively.
Recently, supervised classi�cation has been used
to recognize patterns in this rich and complex
data that allow us to automatically detect neuro-
logical diseases. We have contributed to this �eld
by developing improved methods for feature ex-
traction [345], by applying machine learning to
speci�c diseases [56], and via a survey that sum-
marizes the state of the art.

More information:https://ei.is.tuebingen.mpg.de/project/machine-learning-for-medical-and-neuroscienti�c-
imaging
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Inference in Astronomy

Figure 1.12: From left to right: (1) deepest existing image of NGC 5907, showing a recently discovered faint stellar
stream (Martínez-Delgado et al., The Astronomical Journal., 689:184-193, 2008); (2-5) example images obtained
by a Web search for NGC 5907 (manually removing images that show the stellar stream); (6) result obtained by our
algorithm (tone-mapped to the histogram of the deep image).

Astronomy offers some of the most exciting
opportunities for machine learning applications
in the natural sciences. Satellite missions as well
as ground-based observations have generated
datasets of unprecedented quality and size. New
sub�elds of astronomy such as exoplanet science
have emerged, impossible without large scale
data analysis. However, by and large, data analy-
sis in astronomy is still rather conservative, and
there are thus large opportunities for data-driven
modeling and probabilistic inference. Our work
in this �eld bene�ts from methods developed
within several projects in the department, and
some of it is thus discussed elsewhere (see page
23where an astronomical image deconvolution
method [184] is discussed).

Combining hetergeneous imagingThe Web
contains millions of astronomical images that
contain scienti�cally valuable information about
the night sky. However, these images are dif�cult
to use for scienti�c purposes because images ren-
dered for human visual consumption are usually
processed with non-linear tone mappings. We
developed a system that builds a high dynamic-
range and wide-angle image of the night sky
by combining a large set of such images [361].
It computes a “consensus” image whose pixel
brightnessrank information tries to agree with
the individual images. The complexity of the
algorithm is linear in the number of images. It
permits discovery of astronomical objects or fea-
tures that are not visible in any of the input im-
ages taken individually, as shown by a faint tidal
stellar stream (see Figure1.12). More impor-
tantly, however, it permits scienti�c exploitation
of a huge source of astronomical images that
would not be available to astronomical research
without our automatic system The system was
featured on the BBC Stargazing Live program.

Half-sibling regression for modeling sys-
tematic errors

The Kepler space observatory, launched in
2009, observes a tiny fraction of the Milky Way
in search for exoplanets, monitoring the bright-
ness of 150,000 stars. Some of them exhibit
periodic descreases of brightness in their light
curves due to partial occlusions caused by exo-
planets. These measurements, however, are cor-
rupted with systematic noise due to the telescope.
However, since the stars can be assumed to be
causally independent of each other (they are light
years apart) as well as of the instrument noise, it
turns out that we can denoise the signal of a sin-
gle star by removing all information that can be
explained by the measurements of the other stars.
Under the assumption that the systematic noise
acts in an additive manner, we provide strong
theoretical guarantees regarding the quality of
the reconstruction [349].

Exoplanet search & characterization We
applied the half-sibling regression model to per-
form the �rst systematic search for transiting
exoplanet signals in new data from NASA's K2
Mission. Using this method, we discovered 36
new planet candidates—of which 21 were subse-
quently validated as bona �de exoplanets (Mon-
tet et al., Astrophysical Journal, 809, 25, 2015)—
and demonstrated that these data could be used
for planet detection despite the large systematic
errors [38]. We used principal component analy-
sis to reduce the dimensionality of the predictors
and extended the half-sibling methodology to
jointly �t for the regression weights and the exo-
planet properties. This increased the sensitivity
of our search to small signals and allowed the
propagation of uncertainties in the systematics
model to our estimates of the physical parame-
ters.

More information:https://ei.is.tuebingen.mpg.de/project/astronomy
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Robot skill learning

Figure 1.13: The robot learning lab aims at �nding a general approach to acquiring motor skills. Developed
algorithms and methods are tested in skill learning tasks such as playing table tennis.

Creating autonomous robots that can learn to
assist humans in daily life situations is a fasci-
nating challenge for machine learning. We focus
on the �rst step of creating robots that can learn
to accomplish many different tasks triggered by
an environmental context or a higher-level in-
struction and plan to obtain a general approach
to motor skill learning. We focus on (1) domain-
appropriate machine learning approaches that al-
low for better control, imitation of behavior and
self-improvement, as well as (2) new robotics
approaches to create more appropriate systems
for high-speed skill learning.

Starting from theoretically sound robotic con-
trol structures for task representation and execu-
tion, we replace analytic modules with more �ex-
ible learned ones [468]. To this end, we tackle
problems such as accurate but compliant exe-
cution in joint-space [583] or task-space [150],
learning of elementary behaviors using combi-
nation of imitation and reinforcement learning
[178, 238], hierarchical composition of behav-
iors, and parsing complex demonstrations into

elementary behaviors.
Mimicking how children learn new motor

tasks, we have used imitation to initialize to
learn libraries of elementary primitives, and sub-
sequently reinforcement learning to improve the
performance. We have learned elementary tasks
such as Ball-in-a-Cup or bouncing a ball [178,
238] and gradually moved to more complex
ones. As the benchmark of complex behavior,
we chose the task of returning table tennis balls
over the net. We created a parser that segments
movements of a human teacher into elementary
movements [594, 596]. These then train the sin-
gle elementary movements [178, 238]. Novel be-
haviors, modulated by the opponent's incoming
ball, are composed by mixing motor primitives
[465, 581]. With the help of this method, the
robot table tennis player learnt with this method
successfully returns of 97% of the balls played
against a ball gun. Current approaches are likely
to achieve even better results [347] and use accu-
rate prediction of the human opponent's behavior
before the opponent even touched the ball [459].

More information:https://ei.is.tuebingen.mpg.de/project/robot-skill-learning
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Reinforcement learning

Figure 1.14: Ball-in-a-cup was learned with the EM-like policy search approach called PoWER [178].

Reinforcement learning ranks among the
biggest challenges for machine learning. Just
controlling a known dynamical system is hard
on its own – interacting with an unknown system
poses even harder decision problems, such as the
infamous exploration-exploitation tradeoff. Most
research in this area is still con�ned to theoreti-
cal analysis and simplistic experiments, but the
promise of autonomous machines justi�es the
effort. Over the past years, members of the de-
partment contributed to reinforcement learning
in theory and experiment.

Non-Parametric Dynamic Programming
[530] showed that a non-parametric kernel den-
sity representation of system dynamics uni�es
several popular policy evaluation methods: their
Galerkin method joins Least-Squares Temporal
Difference learning, Kernelized Temporal Dif-
ference learning, and a type of discrete-state Dy-
namic Programming, as well as a novel method
of improved performance.

EM-like Reinforcement Learning Policy
search, a successful approach to reinforcement
learning, directly maximizes the expected return
of a policy – in contrast to value function ap-
proximation, which derives policies from a learnt
value function. However, few of its variants scale
to many dimensions, as they are based on gra-
dient descent over many trials. To improve ef-
�ciency, [178] reduced the problem to reward-
weighted imitation, treating rewards received af-

ter actions as improper probabilities indicating
the actions' success. Their idea resembles Ex-
pectation Maximization, giving good actions a
higher probability to be re-used. This framework
also uni�es previous algorithms, and allows the
derivation of novel ones, such as episodic reward-
weighted regression and PoWER.

Relative Entropy Policy SearchPolicy im-
provements in policy search often invalidate
previously collected information, causing pre-
mature convergence and implausible solutions.
These problems may be addressed by constrain-
ing the information loss. Relative Entropy Pol-
icy Search (REPS) bounds the information loss
while maximizing expected return [586]. REPS
differs signi�cantly from previous policy gradi-
ent approaches. It yields an exact update shown
to work well on reinforcement learning bench-
marks. REPS can be generalized hierarchically
[455] using a gating network to choose among
several option policies. This hierarchical REPS
learns versatile solutions while increasing learn-
ing speed and the quality of the learnt policy.

Bayesian reinforcement learningProbabil-
ity theory gives a uniquely coherent answer to
the exploration-exploitation dilemma: From the
Bayesian perspective, reinforcement learning is
about including possible future observations in
considerations about optimal behavior. Since
probabilistic models can predict future data, this
process can be rigorously formalized. It amounts
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to modeling knowledge as an additional dynamic
variable to be controlled. In general, the combi-
natorial number of possible futures is intractable;
however, [540] showed that the Gaussian process
(GP) framework, in which predictions involve
linear algebra calculations, allows approximat-
ing optimal exploration-exploitation with classic
numerical methods for the solution of stochastic
differential equations.

Reinforcement learning with Gaussian
Processes:[279] used GPs for approximate dy-
namic programming in reinforcement learning,
as probabilistic function approximators for the
value function, and as models of the system
dynamics. Using the predictive uncertainty for
guidance, active learning methods could explore
the state space ef�ciently. [555] proposed a par-
ticularly ef�cient use of GPs for optimal control
over continuous states for non-bifurcating sys-
tems with low sampling rate. In their work, GPs
capture information gained, as well as remaining
uncertainty due to noise and lack of experience.
The system's behavior is predicted by propagat-
ing state and action distributions through time,
tractability is achieved approximating distribu-
tions by moment matched Gaussians. This “vir-
tual simulation” is used to optimize the control
policy. Their algorithms learn from even lim-
ited interactions with the environment due to the
power of using probabilistic forward models for
such indirect experience rehearsal.

Apprenticeship learning via inverse rein-
forcement learning Unguided exploration can
be hazardous for systems like robots. This issue
is addressed by imitation learning from exam-
ple actions provided by an expert, where the au-
tonomous agent learns a policy generalizing the
demonstrations to new states. This behavioral
cloning may fail when the dynamics of expert
and learner differ. Indeed, even simple repeti-
tion of the expert's actions does not always yield
the same results. An alternative is to infer the
expert's reward function from the expert's be-

havior, then use it to learn in the new system.
This avoids exhaustive exploration by searching
for policies close to the expert's. Previous work
required a model of the expert's dynamics, but
[508] presented a model-free inverse reinforce-
ment learning algorithm, using importance sam-
pling to adapt expert examples to the learner's
dynamics. Tested on several benchmarks, the al-
gorithm proved more ef�cient than the state of
the art. Generalization in both forward and in-
verse reinforcement learning depends on the pro-
jection of states onto features to describe reward
and value function. Features, especially visual
ones, are often subject to noise, for example in
robot grasping and manipulation tasks. To solve
this problem, [463] combined control and struc-
tured output prediction over Markov Random
Fields to represent the action distribution. Their
method is robust to noise in a grasping task, and
can also be used in other applications requiring
control from vision.

Data-dependent Analysis of Reinforce-
ment Learning Many analyses of reinforce-
ment learning focus on worst-case scenarios,
although reality is often not adversarial. [536]
used PAC-Bayesian inequalities for martingales
in a data-dependent analysis of the exploration-
exploitation trade-off [138]. We studied stochas-
tic multi-armed bandits with side information
(also known as contextual bandits), a general
framework where at each round of the game the
agent is presented with side information (e.g.,
symptoms of a patient in a medical application)
and has to �nd the best action (e.g., the best drug
to prescribe given the symptoms). This model
class is also used for personalized advertising
on the internet. Our analysis includes the ac-
tual usage of side information by the algorithm,
rather than the total amount of side information
provided. This allows offering a lot of side infor-
mation and letting the algorithm decide what is
relevant, improving the run time of the algorithm
exponentially over the state of the art.

More information:https://ei.is.tuebingen.mpg.de/project/reinforcement-learning
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Brain-computer interfacing

Brain-computer interfaces (BCIs) translate
neural recordings into signals that may be used
for communication and/or the control of neu-
roprosthetic devices. Research in this domain
poses interesting challenges to machine learn-
ing, because data is typically scarce, noisy, and
non-stationary [186]. Furthermore, good decod-
ing algorithms are contingent on domain knowl-
edge that is not readily available and dif�cult
to incorporate into traditional statistical meth-
ods. Accordingly, we employ machine-learning
methods to study neural processes involved in
BCI-control and use these insights to develop
novel decoding algorithms and enhance experi-
mental paradigms.

Machine learning algorithms for brain-
state decodingA crucial aspect of our work
is the development of algorithms for real-time
brain-state decoding. We have developed a graph-
ical model decoding framework for ERP-based
visual speller systems [187]. Furthermore, we
were the �rst to successfully apply the frame-
work of multi-task learning to the domain of
BCIs [560]. As the signal characteristics used
by subjects to control a BCI share common as-
pects, the incorporation of data from previously
recorded subjects substantially decreases cali-
bration time and enhances overall decoding per-
formance [13]. Besides working on methods for
real-time decoding, we also develop tools to in-
vestigate the neural basis of disorders of cogni-

tion [14, 46]. This is essential to understand how
the diseased brain differs from the one of healthy
subjects, which has implications for the design
of BCI systems for patient populations.

Brain-computer interfaces for communica-
tion Building upon our machine-learning meth-
ods, we have investigated the neural basis of the
ability to operate a BCI in healthy subjects and
in patient populations. We were able to show
that the con�guration of large-scale cortical net-
works, as represented in high-frequency gamma-
oscillations of the brain's electromagnetic �eld,
in�uences a subject's ability to communicate
with a BCI [149, 174]. Building upon these in-
sights, we have developed a novel class of BCIs
for patients in late stages of amyotrophic lateral
sclerosis [81, 346].

Brain-computer interfaces for rehabilita-
tion While BCIs were initially conceived as
communication devices for the severely disabled,
we have argued that they can also be used for
stroke rehabilitation [183]. By combining a BCI
with a seven degrees-of-freedom robotic arm,
serving an exoskeleton, we developed a brain-
controlled rehabilitation robot supporting pa-
tients with chronic stroke in self-regulation of
sensorimotor brain rhythms [194]. The concept
of brain-controlled rehabilitation robotics can be
extended to systems that monitor patients' learn-
ing progress to adapt the rehabilitation exercise
in real-time [65].

More information:https://ei.is.tuebingen.mpg.de/project/brain-computer-interfaces
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Learning and inference for neuroscience

Figure 1.15: Left: example of LFP signal (blue) and concurrent fMRI activity (black), repetitive dynamical patterns
appear in red blocks. Right: learned dictionary of dynamical patterns, together with their brain-wide signature.

Mammalian brains ef�ciently combine per-
ception, decision making, and motor commands
in hundreds of milliseconds. Machine learning
can help understand these fascinating distributed
information processing capabilities.

A �rst application of machine learning algo-
rithms to neuroscience is the extraction of infor-
mation from complex brain signals, focusing on
their dynamical aspects. This includes the design
of non-parametric statistical dependency mea-
sures for time series using an implicit mapping
in a Reproducing Kernel Hilbert Space to cap-
ture complex non-linear dependencies between
brain rhythms [441], as well as dictionary learn-
ing techniques that automatically identify the
transient dynamical patterns in ongoing Local
Field Potentials (LFP) of a given brain structure
that have an impact on the activity of the whole
brain (see Figure1.15) [160].

A second objective is to infer causal state-
ments about the organization of underlying neu-
ral mechanisms. One key application is the esti-
mation of the direction and strength of informa-
tion �ow across brain networks. We �rst studied
the communication between multiple locations
of the visual cortex using an information the-
oretic measure of Granger causality, Transfer
Entropy, computed between LFP signals during
visual stimulation [224]. Our results suggest the
presence of waves propagating along the cortical
tissue along the direction of maximal �ow of in-
formation, routing visual information across the

visual cortex [34]. We also study novel causal-
ity principles proposed by our department as an
alternative to the Granger causality framework
widely used in neuroscience. In particular, we
developed a new causal inference method for
time series based on the postulate of Indepen-
dence of Cause and Mechanism. We provided
theoretical guaranties for this approach, which
outperformed Granger causality in experimental
LFP signals [353].

Causal inference techniques can also be used
to assess which aspect of brain activity affects
the behavioral outcome of an experiment. Causal
terminology is often introduced in the interpreta-
tion of neuroimaging data without considering
the empirical support for such statements. We in-
vestigated which causal statements are warranted
and which ones are not supported by empirical
evidence [46]. Our work provides the �rst com-
prehensive set of causal interpretation rules for
neuroimaging results.

Beyond providing powerful data analysis tech-
niques, machine learning can help understand
brain function from a theoretical perspective. We
investigated a standard model of neuronal adapta-
tion – spike-timing dependent plasticity – in this
way and showed it can be viewed as a stochastic
gradient descent of a neuromodulatory reward
function implementing a form of empirical risk
minimization [95, 473]. These results help under-
stand optimality properties of biological learn-
ing.

More information:https://ei.is.tuebingen.mpg.de/project/machine-learning-and-neuroscience
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Psychophysics and computational models of behaviour

Figure 1.16: Visualization of the machine learning approach to uncover critical features. Consider the problem of
predicting for an image patch whether it is likely to be a saccade target or not. Panel (a) depicts image patches
that have (yellow) or have not (red) been saccade targets. The yellow-to-red gradient represent the response of
a SVM with a Gaussian kernel trained on the patches. Panel (b): Gradient descent on the function that the SVM
implements, extrema are indicated. Panel (c): Using the extrema, a network with four kernels centered on them

approximates the SVM. (Adapted from [289].)

This project investigates human perception,
combining psychophysical experiments and com-
putational modeling. Currently we have four
main research foci:

First, we develop methods to gain more in-
formation from psychophysical data. We char-
acterized serial dependencies in behavioral re-
sponses, and introduced methods to correct for
them [63]. We wrote a software package to per-
form Bayesian inference for the psychometric
function for non-stationary data. In addition, we
introduced the use of spatial point processes to
characterize eye-movement �xation patterns [41,
99]. Finally, we continue to improve machine
learning methods to uncover the critical features
observers use in complex perceptual tasks [118,
148]) (c.f. [289] and Figure1.16).

Our second focus is the development of an
image-based model of spatial vision. We inte-
grated the large psychophysical literature on sim-
ple detection and discrimination experiments and
proposed a model based on maximum-likelihood
decoding of a population of model neurons pre-
dicting several data sets simultaneously, using a

single set of parameters [108].
Third, the project seeks to understand the fun-

damental questions of characterizing the compu-
tational principles underlying lightness percep-
tion, treating lightness perception as one exam-
ple of how to rigorously study the visual mech-
anisms translating ambiguous retinal input into
perceptually and psychologically relevant cate-
gories [22, 23, 117].

Finally, we are moving towards understand-
ing perceptual causality. Recently there has been
considerable progress in understanding causal
inference by viewing it as a machine learning
problem. This is relevant to perception since an-
imals cannot operate based on the assumption
of independent and identically distributed (iid)
data but need to employ suitable inference meth-
ods that work under changing distributions in
order to produce robust perception. We study
causal models of perception in a simple binary
classi�cation setting where the perceiver needs
to distinguish cause and effect, or forward and
backward, a task we recently studied in a com-
puter vision context [363]

More information:https://ei.is.tuebingen.mpg.de/project/psychophysics-and-computational-models-of-behaviour
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Computing Infrastructure

Figure 1.17: Some of the nodes of the computer cluster.

The desktop computing environment of the
Department of Empirical Inference is based on
Intel PCs, and currently uses the centrally man-
aged operating systems Ubuntu Linux, Microsoft
Windows, and Mac OS X. Silent PCs with no
moving parts are used to provide the best possi-
ble work environment.

For data storage the department currently of-
fers 80TB of online �le system storage on two

�le servers, used for shared data as well as
personal home directories. Backups are done
through a tape library system, as well as a disk
based snapshotting system for the most impor-
tant data. Off-site storage from RZ Garching is
offered for long-term archival of scienti�c data.

For numerical experiments the group has ac-
cess to a high performance computing cluster,
shared by the departments of the MPI for Intel-
ligent Systems. The cluster nodes and their sup-
porting infrastructure are maintained by a cen-
tral scienti�c facility. The Empirical Inference
department is using a 45% share of the central
cluster as of now. The cluster comprises 32 rack-
mounted multi-processor nodes based on the
x86_64 architecture, running Ubuntu Linux. The
nodes are connected via10 GBit/s �ber-optic
connections. In total, the system consists of 1536
Intel and AMD 64-bit CPU cores with 18.5 ter-
abytes of memory, as well as 74 modern nVidia
GPUs and 100 terabytes of fast distributed stor-
age space. The most powerful machines have 64
CPU cores and 1 terabyte of memory.

Robot Learning Lab: High-Speed Robot Arms

Figure 1.18: The Barrett WAM robot arm.

The Robot Learning Lab of the Empirical
Inference Department focuses on �nding task-
appropriate machine learning methods for acquir-
ing and re�ning motor skills. Current objectives
include learning high-speed compliant control,

learning simple skills (e.g., ball-in-a-cup or pad-
dling balls), and larger composite tasks such as
table tennis. These goals require a unique and
maintenance-intensive set-up.

For fast as well as compliant control, we have
a unique, custom-made high-voltage version of a
Barrett WAM robot arm speci�cally designed for
high-speed control while having seven degrees
of freedom. Torque-level access to the robot,
back drivability, and little backlash enables the
use of this platform for learning control experi-
ments and as a haptic input device during imita-
tion learning or robot task assistance. The robot
control makes use of a four camera high-speed
(200 Hz) vision setup developed for that purpose.
All software is based on a real-time Linux op-
erating system and on the robot programming
framework SL.

A tendon-driven pneumatic arti�cial muscle
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robot arm is being developed in order to study an-
tagonistically actuated joints, allowing for light-
weight segments, incorporating strong muscles,
and using co-contraction for compliant control.
We aim at approaching performance as observed
in humans by designing such a system and en-

abling safer applications of learning control ap-
proaches whilst extending the variety of possible
trajectories. We aim to use this new robot to show
that learning can be particularly bene�cial when
classical methods fail.

Brain-Imaging Equipment

Figure 1.19: The BCI lab of the empirical inference de-
partment.

The QuickAmp 136 (Figure1.19, left) is a
high input-impedance ampli�er capable of mea-
suring and recording up to 128 channels of elec-
troencephalographic (EEG) data, as well as eye
(EOG), muscle (EMG), and other physiological
signals. It is used for Brain-Computer Interface
research, where brain signals with low noise are

desirable, high temporal and spatial resolution,
and where EOG and EMG signals are also re-
quired for artifact control. As of 2011, we also
have a 128-channel active electrode system man-
ufactured by BrainProducts GmbH, substantially
reducing the preparation time of experimental
studies and providing better signal-to-noise ra-
tios outside of well-controlled laboratory envi-
ronments (Figure1.19, right). We have further
acquired the Armeo Power, a robotic exoskele-
ton manufactured by Hocoma AG in Volketswil,
Switzerland. This exoskeleton enables us to both
support and perturb movements of the upper ex-
tremities during motor learning, which enables
us to study the neural basis of motor learning
in healthy subjects and patient populations with
movement disorders.

Computational Imaging

Figure 1.20: Hexapod robot with camera mounted to
create repeatable camera shakes.

In computational imaging it is only of limited
value to work on simulated images. Instead it
is important to develop deblurring and denois-
ing algorithms that work on real data. To be
able to take such photographs for varying se-
tups and with controlled distortions, we use sev-

eral SLR and CCD cameras (including cooled
and uncooled Canon 5D Mk. II, Canon 5DS R,
Sony A7R Mk. II, Finger Lakes Instruments ML-
16803) with various lenses. For quality assess-
ment and quantitative comparisons we use an
image quality analysis system (iQ Analyer by
Image Engineering). To generate images and im-
age sequences with controlled camera shake, we
also use a Stewart platform (hexapod robot, see
Figure1.20) that allows a high accuracy for re-
peated movements.

In addition to usual photographic lenses we
also make use of telescopes (including a Meade
12” Schmidt-Cassegrain) that allow us to work
on real-world astronomical image sequences
affected by turbulence. Furthermore we em-
ploy a setup with two telescopic mounts (ASA
DDM60PRO, Vixen Sphinx) to study and de-
velop reinforcement learning algorithms to im-
prove their tracking precision.
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2015

Shai Ben-David andRuth Urner Best Paper Award at NIPS 2015 Workshop on "Transfer and
Multitask Learning: Trends and New Perspectives".

Jakob Zscheischler: Köppen Award for his excellent doctoral dissertation (in climate and Earth
system research) done at the MPI for Intelligent Systems and the MPI for Biogeochemistry
in Jena.

Vinay Jayaram: Second prize in the "T3 Award" - Thesis in 3 - category PhD students. Title of
the presentation: "Why can't we control computers with our minds yet?"

Leonardo Casarsa:Second prize in the "T3 Award" - Thesis in 3 - category Master students.
Title of the presentation: "Can computers treat sick brains?"

Matej Balog: Winner of Code Hunt programming contest at Microsoft Research PhD Summer
School 2015

Jakob Zscheischler:Otto-Hahn-Medal for his PhD Thesis "A global analysis of extreme events
and consequences for the terrestrial carbon cycle", performed at the MPI for Intelligent
Systems, Tübingen and the MPI for Biogeochemistry, Jena.

Katharina Muelling: Award for Extraordinary Scienti�c Achievement for her Ph.D. thesis by
the "Freunde der TU Darmstadt".

Oliver Kroemer: Runner Up for the 2015 Georges Giralt Award (Best European Robotics Ph.D.
Thesis Award)

Jan Peters: ERC Starting Grant (2015-2020) for Research on Movements of Humanoid Robotics

Philipp Hennig: Emmy-Noether-Program "Probabilistic Numerics - Probabilistic Programming
for Autonomous Systems"

2014

Carl-Johann Simon-Gabriel: Google European Doctorate Fellowship 2014-2016.

M. Deisenroth (TU Darmstadt), P. Englert (Uni Stuttgart),J. Peters, D. Fox (U. Washington):
IROS Best Cognitive Robotics Paper Award.

O. Kroemer (TU Darmstadt), H. van Hoof (TU Darmstadt), G. Neumann (TU Darmstadt),J.
Peters: IROS Best Cognitive Robotics Paper Award Finalist

A. Abdolmaleki (Universidade de Aveiro), N. Lau (Universidade de Aveiro), G. Neumann (TU
Darmstadt),J. Peters: 1st Place at the 3D Free Challenge of the RoboCup 2014.

Sebastian Weichwald, Timm Meyer, Bernhard Schölkopf, Tonio Ball, and Moritz Grosse-
Wentrup: best student paper award at the 4th International Workshop on Cognitive Informa-
tion Processing (CIP 2014) for: "Decoding Index Finger Position From EEG Using Random
Forests".

Moritz Grosse-Wentrup and Daniel Braun: Teaching Award Winter & Summer Term 2013/14
at Graduate School of Neural Information Processing, University of Tübingen

Bernhard Schölkopf: Royal Society Milner Award 2014

Max Planck Institute for Intelligent Systems, Stuttgart � Tübingen | Research and Status Report 2010 – 2015 | Part I



361 Empirical Inference
1.4 Awards & Honors

2013

Manuel Gomez-Rodriguez: outstanding paper award at NIPS 2013 for the paper: "Scalable
In�uence Estimation in Continuous-Time Diffusion Networks"

Jan Peters: Young Investigator Award of the International Neural Networks Society (INNS) in
2013.

Jan Peters: Early Career Award of the IEEE Robotics and Automation Society in 2013.

Jens Kober: Georges Giralt Award as the Best European Robotics PhD Thesis for his PhD Thesis
"Learning Motor Skills: From Algorithms to Robot Experiments".

Jonas Peters: ETH Silver Medal for his PhD thesis "Restricted Structural Equation Models for
Causal Inference".

Thomas Schultz: MRM Distinguished Reviewer Award.

2012

Ulrike von Luxburg : Heisenberg Professorship

Jan Peters: Early Career Spotlight of the conference Robotics: Science & Systems (R:SS) in
2012.

Jan Peters: Frontiers of Arti�cial Intelligence speaker at European Conference on Arti�cial
Intelligence (ECAI) in 2012.

Christian Daniel, Gerhard Neumann, andJan Peters: IROS CoTeSys Cognitive Robotics Best
Paper Award, IROS 2012 Best Student Paper Award Finalist, and IROS 2012 Best Paper
Award Finalist for "Learning Concurrent Motor Skills in Versatile Solution Spaces" at the
International Conference on Intelligent Robot Systems (IROS)

Stefan Harmeling: Günter Petzow Prize of the Max-Planck-Institute for Intelligent Systems

Bernhard Schölkopf: Academy Prize 2012 of the Berlin-Brandenburg Academy of Sciences and
Humanities

2011

Moritz Grosse-Wentrup andBernhard Schölkopf: Annual BCI Research Award 2011 for the
project "What are the neurophysiological causes of performance variations in brain-computer
interfacing?"

Thorsten Zander: Willumeit award for his Ph.D. thesis entitled "Utilizing Brain-Computer
Interfaces for Human-Machine Systems".

Harold Christopher Burger , andStefan Harmeling: DAGM 2011 Prize for "Improving De-
noising Algorithms via a Multi-Scale Meta-Procedure".

Suvrit Sra: Best Paper Runner up Award in Data Mining at The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
2011 for "Fast Projections onto L1,q-Norm Balls for Grouped Feature Selection".

Jan Peters: Dick Volz Award Best 2007 US Ph.D. Thesis Runner-Up Award.

Suvrit Sra: SIAM Outstanding Paper Prizes for his paper "The Metric Nearness Problem," which
appeared in the SIAM Journal on Matrix Analysis and Applications (SIMAX).
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Gustavo Camps-Valls, Joris Mooij , andBernhard Schölkopf: were selected for the 'IEEE
Geoscience and Remote Sensing Society 2011 Letters' Prize Paper Award for "Remote
Sensing Feature Selection by Kernel Dependence estimation".

Bernhard Schölkopf: Annual Max Planck Research Award (shared with Sebastian Thrun, Stan-
ford)

2010

Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause: Best Paper Award Honorable
Mention at the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD'2010) for the paper: "Inferring Networks of Diffusion and In�uence."

Joris Mooij : Winner of two categories of the 2010 UAI Approximate Inference Challenge, 26th
Conference on Uncertainty in Arti�cial Intelligence

Bernhard Schölkopf: Inclusion in the list of 'ISI Highly Cited Researchers'

Hirotaka Hachiya,Jan Peters, Mashashi Sugiyama: Young Researchers Award from IEEE Com-
putational Intelligence Society of the Japan Chapter for their paper "Adaptive Importance
Sampling with Automatic Model Selection in Reward Weighted Regression" presented at the
Workshop of IEEE CIS Technical Committee on Neurocomputing (March 9-11, 2010).

Carl Edward Rasmussenand Chris Williams: 2009 DeGroot Prize for textbooks or monographs
concerned with fundamental issues of statistical inference, decision theory and/or statistical
applications, and chosen based on their novelty, thoroughness, timeliness, and importance of
their intellectual scope: Gaussian Processes for Machine Learning, MIT Press 2006.

Oliver Kroemer , Renaud Detry,Justus Piater, Jan Peters: Best Paper Award of the 7th Inter-
national Conference on Informatics in Control, Automation and Robotics (ICINCO) for:
"Grasping with Vision Descriptors and Motor Primitives".

Povilas Daniusis, Dominik Janzing, Joris Mooij , Jakob Zscheischler, Bastian Steudel, Kun
Zhang,Bernhard Schölkof: Best student paper award for: "Inferring Deterministic Causal
Relations", 26th Conference on Uncertainty in Arti�cial Intelligence (UAI)

Jan Peters, Jun Morimoto, Nick Roy, Jun Nakanishi: Most Active Technical Committee Award
of the IEEE Robotics and Automation Society at ICRA 2010

José M. Leiva, Suzanne M.M. Martens: winning team of the Machine Learning for Signal
Processing (MLSP) 2010 Competition: Mind Reading

2009

Reshad Hosseini, Matthias Bethge: prize winning method for the highest performance in the
main challenge of GREAT08 PASCAL competition (Gravitational Lensing and Accuracy
Testing 2008)

Bharath Sriperumbudur , Kenji Fukumizu , Arthur Gretton , Gert Lanckriet,Bernhard Schölkopf:
Honorable Mention, Outstanding student paper award for "Kernel Choice and Classi�ability
for RKHS Embeddings of Probability Distributions" at Twenty-Third Annual Conference on
Neural Information Processing Systems (NIPS)

Nino Shervashidze, Karsten Borgwardt : Fast Subtree Kernels on Graphs, Outstanding student
paper award, Twenty-Third Annual Conference on Neural Information Processing Systems
(NIPS)
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Christian Walder , Martin Breidt, Heinrich Bülthoff,Bernhard Schölkopf, Cristobal Curio:
Markerless 3D Face Tracking, Runner up prize of the conference of the German Association
for Pattern Recognition (DAGM)

Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf: top score in 'low noise' GREAT08
PASCAL competition (Gravitational Lensing and Accuracy Testing 2008)

Stefan Harmeling, Michael Hirsch, Suvrit Sra, Bernhard Schölkopf: Best Poster Award for
"Online Blind Deconvolution with Super-Resolution & Saturation Correction", at the 1st
International Conference on Cosmology and Statistics (CosmoStats09)

Matthias Hofmann, Florian Steinke, Verena Scheel,Guillaume Charpiat , Jason Farquhar,
Philip Aschoff, Michael Brady,Bernhard Schölkopf and Bernd J. Pichler: MRI-Based
Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition
and Atlas Registration, Best Paper Awards 2008 of The Journal of Nuclear Medicine
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1.5 Director pro�le: Bernhard Schölkopf

Bernhard Schölkopf studied Physics, Mathematics and Philosophy in Tübingen and London. In
1994 he joined Bell Labs to work on a Ph.D. with Vladimir Vapnik. Following researcher positions
at GMD, Microsoft Research, and a biotech startup, Schölkopf started his lab at the Max Planck
Institute for Biological Cybernetics (Tübingen) in 2002. In 2011, he became a founding director of
the Max Planck Institute for Intelligent Systems.

Bernhard Schölkopf has been program chair of NIPS and COLT and is currently co-editor-in-
chief of the �agship journal in machine learning (JMLR). He has been elected to the boards of the
NIPS foundation and of the International Machine Learning Society. With Alex Smola, he initiated
theMachine Learning Summer Schoolsseries in 2002, which has meanwhile been organized, by
various teams, 30 times. Many of his past students and postdocs have gone into academia (around
30 tenured or tenure-track positions) as well as to R&D labs (around 25 tenured), and he is one of
the most highly cited researchers in Computer Science worldwide.4

Appointments

2015 – present Co-Director of the Max Planck ETH Center for Learning Systems
2015 – present Member of the Max Planck Campus Triumvirat, Tübingen
2011 – 2013 Managing Director, MPI for Intelligent Systems, Stuttgart & Tübingen
2011 – present Director, Max Planck Institute for Intelligent Systems
2012 – present Guest Professor, ETH Zürich, Computer Science Department
2010 – present Honorarprofessor, Tübingen University, Department of Mathematics and Physics
2002 – present Honorarprofessor, Technical University Berlin, Department of Computer Science

Awards & Honors (2009 – 2015)

2015 Overseas Visiting Scholarship, St. John's College, Cambridge, UK
2014 Royal Society Milner Award, London, UK
2013 XXVIIIth Courant Lectures, New York University
2012 Academy Prize, Berlin-Brandenburg Academy of Sciences and Humanities
4http://web.cs.ucla.edu/~palsberg/h-number.html
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2011 Posner keynote lecturer at the NIPS Conference, Granada, Spain
2011 Max Planck Research Award, Max Planck Society
2011 Annual Brain Computer Interfaces Research Award (with Moritz

Grosse-Wentrup)
2010 Inclusion in the list of ISI Highly Cited Researchers

Current Memberships

SimTECH (Excellence Cluster for Simulation Technology, Stuttgart University); Center for Integra-
tive Neuroscience (Excellence Cluster, Tübingen University ); Bernstein Focus for Neurotechnology
(Freiburg/Tübingen); Bernstein Center for Computational Neuroscience (BCCN, Tübingen); German As-
sociation for Pattern Recognition (DAGM); Deutsche Mathematiker Vereinigung (DMV); Association for
Computing Machinery (ACM); Institute of Electrical and Electronics Engineers (IEEE, Senior Member);
European Academy of Sciences and Arts.

Committees, Service, Board Memberships

Co-founder of DALI – Data, Learning, and Inference (2015 –); Core Committee Member, MPI for Biological
Cybernetics (2015 –); The Future of AI – A New York University Symposium on Science, Technology, Rea-
son and Ethics (2016); ACM Heidelberg Laureate Forum Committee (2014–), Section Panel for Mathematics
in Science and Technology, International Congress of Mathematicians (ICM) 2014; General Chair of the
International Conference on Arti�cial Intelligence and Statistics (AISTATS) 2012; Initial Training Network
for Machine Learning for Personalized Medicine (MLPM); PASCAL/PASCAL2 EU Network of Excellence;
Forum Scientiarum at the University of Tübingen; Snowbird Learning workshop; Machine Learning Summer
Schools (MLSS); International Machine Learning Society (IMLS); Neural Information Processing Systems
Foundation (NIPS).

Review Panels

Member of the pool of experts in the process to establish the Alan Turing Institute; Centre for Doctoral
Training (CDT) in Data Science, Edinburgh, UK; Italian Institute of Technology (IIT); Computer Science
Department, École Normale Supérieure, Paris; Neural Computation and Adaptive Perception Program of the
Canadian Institute of Advanced Research (Chair); Gatsby Computational Neuroscience Unit, Quinquennial
Review 2010; Machine Learning Program, NICTA (Sydney).

Editorial Board

Journal of Machine Learning Research (JMLR, Co-editor-in-chief); International Journal of Computer Vision
(2004 – 2010); Foundations and Trends in Machine Learning (since 2007); SIAM Journal on Imaging
Sciences (2007 – 2012); SeriesACM Books, Association for Computing Machinery.

Invited Talks 2009 – 2015 (Selection)

IFAC SYSID, Beijing (2015); Drawing Causal Inference from Big Data, National Academy of Sciences,
Washington, D.C. (2015); International Symposium on Statistical Learning and Data Sciences, London
(2015); Annual Oxford-Warwick Lectures in Statistics, Oxford (2015); Microsoft Distinguished Research
Lecture, Cambridge (2015); Babbage Seminar, University of Cambridge (2015); Annual Meeting of the
Max Planck Earth System Research Partnership, Weimar (2014); Symposium on Hyperspectral Imaging
in Research and Engineering, Shef�eld (2014); Regularization, Optimization and Kernels, Leuven (2013);
Helmholtz Lecture, Humboldt-Universität Berlin (2012); International Conference on Data Mining, Brussels
(2012); Maximum Entropy Conference, Munich (2012); Pattern Recognition in Neuroimaging, London
(2012); Information Hiding Conference, Prague (2011); 4th Pao-Lu Hsu Lecture, Joint Statistics Lab of
Microsoft Research Asia and Peking University (2010); IPMU, Dortmund (2010); SANUM, Stellenbosch
(2010); Techkriti, IIT Kanpur (2010); Methods for Mining Massive Data, Copenhagen (2009).
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1.6 Publications

1.6.1 Books

2014

[1] J. Kober, J. Peters.Learning Motor Skills: From Algorithms to Robot Experiments. Vol. 97. Springer
Tracts in Advanced Robotics. Springer, 191 pages, 2014.

2013

[2] B. Schölkopf, Z. Luo, V. Vovk.Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik.
Springer, 2013.

2011

[3] S. Sra, S. Nowozin, S. Wright.Optimization for Machine Learning. Neural information processing
series. MIT Press, Cambridge, MA, USA, 494 pages, 2011.

[4] H.-S. Lu, B. Schölkopf, H. Zhao.Handbook of Statistical Bioinformatics. Springer Handbooks of
Computational Statistics. Springer, Berlin, Germany, 627 pages, 2011.

[5] D. Barber, A. Cemgil, S. Chiappa.Bayesian Time Series Models. Cambridge University Press,
Cambridge, UK, 432 pages, 2011.

2010

[6] O. Sigaud, J. Peters.From Motor Learning to Interaction Learning in Robots. Studies in Computa-
tional Intelligence ; 264. Springer, Berlin, Germany, 538 pages, 2010.

1.6.2 Proceedings

2013

[7] M. Deisenroth, C. Szepesvári, J. Peters, editors.Proceedings of the 10th European Workshop on
Reinforcement Learning (EWRL 2012). Vol. 24. JMLR Workshop and Conference Proceedings.
JMLR, 173 pages, 2013.

2012

[8] E. Panagiotaki, L. O'Donnell, T. Schultz, G. Zhang, editors.Proceedings of the Workshop on
Computational Diffusion MRI at MICCAI 2012 (electronic publication), 221 pages, 2012.

[9] G. Langs, I. Rish, M. Grosse-Wentrup, B. Murphy, editors.Machine Learning and Interpretation
in Neuroimaging - Revised Selected and Invited Contributions, International Workshop, MLINI at
NIPS 2011. Vol. LNCS 7263. Springer, Heidelberg, Germany, 266 pages, 2012.

2011

[10] S. M. Kakade, U. von Luxburg, editors.Proceedings of the 24th Annual Conference on Learning
Theory (COLT 2011). Vol. 19. JMLR Workshop and Conference Proceedings. JMLR, Cambridge,
MA, USA, 834 pages, 2011.

2010

[11] I. Guyon, D. Janzing, B. Schölkopf, editors.Proceedings of the Workshop: Causality: Objectives and
Assessment at NIPS 2008. Vol. 6. JMLR Workshop and Conference Proceedings. JMLR, Cambridge,
MA, USA, 288 pages, 2010.
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2016

[12] H. Peng, T. Huang, K. Zhang.Model Selection for Gaussian Mixture Models. Statistica Sinica. to
appear, 2016.

[13] V. Jayaram, M. Alamgir, Y. Altun, B. Schölkopf, M. Grosse-Wentrup.Transfer Learning in Brain-
Computer Interfaces. IEEE Computational Intelligence Magazine11(1): 20–31, 2016 (cited on
pages9, 30).

[14] M. Grosse-Wentrup, D. Janzing, M. Siegel, B. Schölkopf.Identi�cation of causal relations in neu-
roimaging data with latent confounders: An instrumental variable approach. NeuroImage125: 825–
833, 2016 (cited on pages7, 30).

[15] R. Babbar, I. Partalas, E. Gaussier, M. Amini, C. Amblard.Learning Taxonomy Adaptation in
Large-scale Classi�cation. Journal of Machine Learning Research. to appear, 2016.

[16] E. Klenske, M. Zeilinger, B. Schölkopf, P. Hennig.Gaussian Process Based Predictive Control for
Periodic Error Correction. IEEE Transactions on Control Systems Technology24(1): 110–121, 2016
(cited on pages7, 20).

[17] K. Zhang, Z. Wang, J. Zhang, B. Schölkopf.On estimation of functional causal models: General
results and application to post-nonlinear causal model. ACM Transactions on Intelligent Systems
and Technologies7(2), 2016.

2015

[18] S. Sippel, J. Zscheischler, M. Heimann, F. E. L. Otto, J. Peters, M. D. Mahecha.Quantifying changes
in climate variability and extremes: Pitfalls and their overcoming. Geophysical Research Letters
42(22): 9990–9998, 2015.

[19] M. R. Divine, P. Katiyar, U. Kohlhofer, L. Quintanilla-Martinez, J. A. Disselhorst, B. J. Pichler.A
Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quanti�es
Tumor Tissue Classes. Journal of Nuclear Medicine57(3): 473–479, 2016.

[20] J. Peters, P. Bühlmann, N. Meinshausen.Causal inference using invariant prediction: identi�cation
and con�dence intervals. Journal of the Royal Statistical Society, Series B. to appear, 2015 (cited on
pages6, 19).

[21] K. Ried, M. Agnew, L. Vermeyden, D. Janzing, R. W. Spekkens, K. J. Resch.A quantum advantage
for inferring causal structure. Nature Physics11(5): 414–420, 2015.

[22] T. Betz, R. M. Shapley, F. A. Wichmann, M. Maertens.Testing the role of luminance edges in
White's illusion with contour adaptation. Journal of Vision15(11): 1–16, 2015 (cited on page32).

[23] T. Betz, R. M. Shapley, F. A. Wichmann, M. Maertens.Noise masking of White's illusion exposes the
weakness of current spatial �ltering models of lightness perception. Journal of Vision15(14): 1–17,
2015 (cited on page32).

[24] D. Janzing, B. Schölkopf.Semi-Supervised Interpolation in an Anticausal Learning Scenario. Journal
of Machine Learning Research16: 1923–1948, 2015 (cited on pages7, 19).

[25] J. F. Ramirez-Villegas, N. K. Logothetis, M. Besserve.Diversity of sharp wave-ripple LFP signatures
reveals differentiated brain-wide dynamical events. Proceedings of the National Academy of Sciences
U.S.A112(46): E6379–E6387, 2015 (cited on page9).

[26] C. J. Schuler, M. Hirsch, S. Harmeling, B. Schölkopf.Learning to Deblur. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 2015 (cited on pages23, 24).

[27] P. Melchior, E. Suchyta, E. Huff, M. Hirsch, T. Kacprzak, E. Rykoff, D. Gruen, R. Armstrong,
D. Bacon, K. Bechtol et al.Mass and galaxy distributions of four massive galaxy clusters from
Dark Energy Survey Science Veri�cation data. Monthly Notices of the Royal Astronomical Society
449(3): 2219–2238, 2015.

[28] I. Bezrukov, H. Schmidt, S. Gatidis, F. Mantlik, J. F. Schäfer, N. Schwenzer, B. J. Pichler.Quantita-
tive evaluation of segmentation- and atlas- based attenuation correction for PET/MR on pediatric
patients. Journal of Nuclear Medicine56(7): 1067–1074, 2015 (cited on page25).
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[29] H. F. Wehrl, I. Bezrukov, S. Wiehr, M. Lehnhoff, K. Fuchs, J. G. Mannheim, L. Quintanilla-
Martinez, M. Kneilling, B. J. Pichler, A. W. Sauter.Assessment of murine brain tissue shrinkage
caused by different histological �xatives using magnetic resonance and computed tomography
imaging. Histology and Histopathology30(5): 601–613, 2015.

[30] C. M. Alaíz, F. Dinuzzo, S. Sra.Correlation matrix nearness and completion under observation
uncertainty. IMA Journal of Numerical Analysis35(1): 325–340, 2015 (cited on page16).

[31] R. Calandra, A. Seyfarth, J. Peters, M. Deisenroth.Bayesian Optimization for Learning Gaits under
Uncertainty. Annals of Mathematics and Arti�cial Intelligence: 1–19, 2015.

[32] S. Manschitz, J. Kober, M. Gienger, J. Peters.Learning Movement Primitive Attractor Goals and
Sequential Skills from Kinesthetic Demonstrations. Robotics and Autonomous Systems74, Part
A: 97–107, 2015.

[33] C. Daniel, O. Kroemer, M. Viering, J. Metz, J. Peters.Active Reward Learning with a Novel
Acquisition Function. Autonomous Robots39(3): 389–405, 2015.

[34] M. Besserve, S. C. Lowe, N. K. Logothetis, B. Schölkopf, S. Panzeri.Shifts of Gamma Phase across
Primary Visual Cortical Sites Re�ect Dynamic Stimulus-Modulated Information Transfer. PLOS
Biology13: e1002257, 2015 (cited on pages7, 9, 31).

[35] K. Muandet, B. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf.Kernel Mean Shrinkage
Estimators. Journal of Machine Learning Research. to appear, 2016 (cited on pages5, 14).

[36] J. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schölkopf.Distinguishing cause from effect using
observational data: methods and benchmarks. Journal of Machine Learning Research. to appear,
2016 (cited on page18).

[37] P. Hennig, M. A. Osborne, M. Girolami.Probabilistic numerics and uncertainty in computations.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
471(2179), 2015 (cited on page22).

[38] D. Foreman-Mackey, B. Montet, D. Hogg, T. Morton, D. Wang, B. Schölkopf.A systematic search
for transiting planets in the K2 data. The Astrophysical Journal906(2), 2015 (cited on pages8, 26).

[39] D. Lopez-Paz, K. Muandet, B. Recht.The Randomized Causation Coef�cient. Journal of Machine
Learning. to appear, 2016.

[40] M. Maertens, F. Wichmann, R. Shapley.Context affects lightness at the level of surfaces. Journal of
Vision15(1): 1–15, 2015.

[41] R. Engbert, H. Trukenbrod, S. Barthelmé, F. Wichmann.Spatial statistics and attentional dynamics
in scene viewing. Journal of Vision15(1): 1–17, 2015 (cited on page32).

[42] B. Schölkopf.Arti�cial intelligence: Learning to see and act. Nature518(7540): 486–487, 2015.

[43] B. Schölkopf, K. Muandet, K. Fukumizu, S. Harmeling, J. Peters.Computing Functions of Ran-
dom Variables via Reproducing Kernel Hilbert Space Representations. Statistics and Computing
25(4): 755–766, 2015 (cited on pages5, 14, 15).

[44] C. Mariti, G. Muscolo, J. Peters, D. Puig, C. Recchiuto, C. Sighieri, A. Solanas, O. von Stryk.
Developing biorobotics for veterinary research into cat movements. Journal of Veterinary Behavior:
Clinical Applications and Research10(3): 248–254, 2015.

[45] A. Kupcsik, M. Deisenroth, J. Peters, L. Ai Poh, V. Vadakkepat, G. Neumann.Model-based Contex-
tual Policy Search for Data-Ef�cient Generalization of Robot Skills. Arti�cial Intelligence, 2015.

[46] S. Weichwald, T. Meyer, O. Özdenizci, B. Schölkopf, T. Ball, M. Grosse-Wentrup.Causal interpreta-
tion rules for encoding and decoding models in neuroimaging. NeuroImage110: 48–59, 2015 (cited
on pages9, 30, 31).

[47] S. Sra.Positive de�nite matrices and the S-divergence. Proceedings of the American Mathematical
Society. published electronically, 2015.

[48] Z. Wang, A. Boularias, K. Mülling, B. Schölkopf, J. Peters.Anticipatory Action Selection for
Human-Robot Table Tennis. Arti�cial Intelligence, 2015 (cited on page8).

[49] P. Hennig.Probabilistic Interpretation of Linear Solvers. SIAM Journal on Optimization25(1): 234–
260, 2015 (cited on page21).
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[50] A. Loktyushin, H. Nickisch, R. Pohmann, B. Schölkopf.Blind multirigid retrospective motion
correction of MR images. Magnetic Resonance in Medicine73(4): 1457–1468, 2015 (cited on
page25).

[51] J. Zhang, K. Zhang.Likelihood and Consilience: On Forster's Counterexamples to the Likelihood
Theory of Evidence. Philosophy of Science, Supplementary Volume 201582(5): 930–940, 2015.

[52] M. Kopp, S. Harmeling, G. Schütz, B. Schölkopf, M. Fähnle.Towards denoising XMCD movies of
fast magnetization dynamics using extended Kalman �lter. Ultramicroscopy148: 115–122, 2015
(cited on page7).

[53] R. Küffner, N. Zach, R. Norel, J. Hawe, D. Schoenfeld, L. Wang, G. Li, L. Fang, L. Mackey,
O. Hardiman, M. Cudkowicz, A. Sherman, G. Ertaylan, M. Grosse-Wentrup, T. Hothorn, J. van
Ligtenberg, J. Macke, T. Meyer, B. Schölkopf, L. Tran, et al.Crowdsourced analysis of clinical trial
data to predict amyotrophic lateral sclerosis progression. Nature Biotechnology33: 51–57, 2015.

2014

[54] J. Zuntz, T. Kacprzak, L. Voigt, M. Hirsch, B. Rowe, S. Bridle.IM3SHAPE: Maximum likelihood
galaxy shear measurement code for cosmic gravitational lensing. Astrophysics Source Code Library
1: 09013, 2014.

[55] T. Kacprzak, S. Bridle, B. Rowe, L. Voigt, J. Zuntz, M. Hirsch, N. MacCrann.Sérsic galaxy models
in weak lensing shape measurement: model bias, noise bias and their interaction. Monthly Notices of
the Royal Astronomical Society441(3): 2528–2538, 2014.

[56] T. Schmidt-Wilcke, P. Cagnoli, P. Wang, T. Schultz, A. Lotz, W. J. Mccune, P. C. Sundgren.Dimin-
ished White Matter Integrity in Patients with Systemic Lupus Erythematosus. NeuroImage: Clinical
5: 291–297, 2014 (cited on page25).

[57] J. A. Disselhorst, I. Bezrukov, A. Kolb, C. Parl, B. J. Pichler.Principles of PET/MR Imaging. Journal
of Nuclear Medicine55(6, Supplement 2): 2S–10S, 2014.

[58] J. F. Schäfer, S. Gatidis, H. Schmidt, B. Gückel, I. Bezrukov, C. A. Pfannenberg, M. Reimold,
E. M., J. Fuchs, C. D. Claussen, N. F. Schwenzer.Simultaneous Whole-Body PET/MR Imaging in
Comparison to PET/CT in Pediatric Oncology: Initial Results. Radiology273(1): 220–231, 2014.

[59] A. Cherian, S. Sra, V. Morellas, N. Papanikolopoulos.Ef�cient nearest neighbors via robust sparse
hashing. IEEE Transactions on Image Processing23(8): 3646–3655, 2014.

[60] C. Persello, A. Boularias, M. Dalponte, T. Gobakken, E. Naesset, B. Schölkopf.Cost-Sensitive
Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classi�cation.
IEEE Transactions on Geoscience and Remote Sensing10(52): 6652–6664, 2014.

[61] S. Martens, M. Bensch, S. Halder, J. Hill, F. Nijboer, A. Ramos-Murguialday, B. Schölkopf, N.
Birbaumer, A. Gharabaghi.Epidural electrocorticography for monitoring of arousal in locked-in
state. Frontiers in Human Neuroscience8(861), 2014.

[62] N. Altobelli, D. Lopez-Paz, S. Pilorz, l. Spilker, R. Morishima, S. Brooks, C. Leyrat, E. Deau, S.
Edgington, A. Flandes.Two numerical models designed to reproduce Saturn ring temperatures as
measured by Cassini-CIRS. Icarus238: 205–220, 2014.

[63] I. Fründ, F. Wichmann, J. Macke.Quantifying the effect of intertrial dependence on perceptual
decisions. Journal of Vision14(7): 1–16, 2014 (cited on page32).

[64] M. Bensch, S. Martens, S. Halder, J. Hill, F. Nijboer, A. Ramos, N. Birbaumer, M. Bodgan, B.
Kotchoubey, W. Rosenstiel, B. Schölkopf, A. Gharabaghi.Assessing attention and cognitive function
in completely locked-in state with event-related brain potentials and epidural electrocorticography.
Journal of Neural Engineering11(2): 026006, 2014.

[65] T. Meyer, J. Peters, T. Zander, B. Schölkopf, M. Grosse-Wentrup.Predicting Motor Learning
Performance from Electroencephalographic Data. Journal of NeuroEngineering and Rehabilitation
11:24, 2014 (cited on page30).

[66] C. Dann, G. Neumann, J. Peters.Policy Evaluation with Temporal Differences: A Survey and
Comparison. Journal of Machine Learning Research15: 809–883, 2014.

[67] H. Ben Amor, A. Saxena, N. Hudson, J. Peters.Special issue on autonomous grasping and manipula-
tion. Autonomous Robots36(1-2): 1–3, 2014.
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[68] B. Bocsi, L. Csató, J. Peters.Indirect Robot Model Learning for Tracking Control. Advanced
Robotics28(9): 589–599, 2014.

[69] M. Gomez Rodriguez, J. Leskovec, D. Balduzzi, B. Schölkopf.Uncovering the Structure and
Temporal Dynamics of Information Propagation. Network Science2(1): 26–65, 2014 (cited on
page17).

[70] Z. Chen, K. Zhang, L. Chan, B. Schölkopf.Causal discovery via reproducing kernel Hilbert space
embeddings. Neural Computation26(7): 1484–1517, 2014.

[71] S. Probst, S. Wiehr, F. Mantlik, H. Schmidt, A. Kolb, P. Münch, M. Delcuratolo, F. Stuben-
rauch, B. Pichler, T. Iftner.Evaluation of Positron Emission Tomographic Tracers for Imaging
of Papillomavirus-Induced Tumors in Rabbits. Molecular Imaging13(1): 1536–0121, 2014.

[72] J. v Buttlar, J. Zscheischler, M. Mahecha.An extended approach for spatiotemporal gap�lling:
dealing with large and systematic gaps in geoscienti�c datasets. Nonlinear Processes in Geophysics
21(1): 203–215, 2014.

[73] J. Zscheischler, M. Mahecha, J. v Buttlar, S. Harmeling, M. Jung, A. Rammig, J. Randerson, B.
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nate global interannual variability in gross primary production. Environmental Research Letters
9(3): 035001, 2014.
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using Inverse Reinforcement Learning. Biological Cybernetics108(5): 603–619, 2014.

[75] H. Schmidt, N. Schwenzer, I. Bezrukov, F. Mantlik, A. Kolb, J. Kupferschläger, B. Pichler.On the
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