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The problems studied in the departmlerdin ods, including graphical models with a recent
be subsumed under the headingemfipirical focus on issues of causality. In terms of the infer-
inference i.e., inference performed on the bance tasks being studied, we have moved towards
sis of empirical data. This includes statisticahsks that go beyond the relatively well-studied
learning, but also the inference of causal strymroblem of supervised learning, such as semi-
tures from statistical data, leading to models thatipervised learning or transfer learning. Finally,
provide insight into the underlying mechanismsie have continuously striven to analyze challeng-
and make predictions about the effect of inteng datasets from biology, astronomy, and other
ventions. Likewise, the type of empirical datdomains, leading to the inclusion of several appli-
can vary, ranging from biological measurementstion areas in our portfolio. No matter whether
(e.g., in neuroscience) to astronomical obsertlhe applications are done in the department or
tions. We are conducting theoretical, algorithmii) collaboration with external partners, consider-
and experimental studies to try and understaimd) a whole range of applications helpsstady
the problem of empirical inference. principles and methods of inferengather than

The department was started around statié%te.rence applied to one speci ¢ problem do-

cal learning theory and kernel methods. It haga!n
since broadened its set of inference tools to in-The most competitive publication venues in
clude a stronger component of Bayesian metmpirical inference are NIPS (Neural Informa-

1The department of El previously belonged to the MPI for biological Cybernetics. The present extended evaluation
covers the period since the last departmental evaluation as part of that institute, i.e., since 2009.
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1 Empirical Inference

tion Processing Systems), ICML (Internationai A machine
Conference on Machine Learning), UAI (Uncetearning algorithm is given training data and tries
tainty in Arti cial Intelligence), and for theoreti-to learn a model that is well-suited to describe
cal work, COLT (Conference on Learning Thehe data and that can be used to make predictions.
ory). The presence at these conferences makés goal of statistical learning theory is to assess
us one of the top international machine learnirtg which extent such algorithms can be success-
labs. In addition, we sometimes submit our workil in principle. The general approach is to as-
to the leading application oriented conferencesme that the training data have been generated
in neighboring elds including computer visionby an unknown random source, and to develop
(ICCV, ECCV, CVPR) and data mining (KDD mathematical tools to analyze the performance
ICDM, SDM), as well as to specialized journalaf a learning algorithm in statistical terms: for
Our work has earned us a number of awards, @xample, by bounding prediction errors (“gener-
cluding best paper prizes at COLT 2003, NIP&ization bounds”) or by analyzing large sample
2004, COLT 2005, COLT 2006, ICML 2006behavior and convergence of algorithms on ran-
ALT 2007, DAGM 2008, CVPR 2008, ISMB dom input (“consistency”). Over the last decade,
2008, ECCV 2008, NIPS 2008, NIPS 2009, UAstatistical learning theory has made signi cant
2010, ICINCO 2010, DAGM 2011, IROS 2012progress in the analysis of supervised learning
NIPS 2013, CIP 2014, and honorable mentiopsoblems such as classi cation and regression.
at IROS 2008, NIPS 2009, DAGM 2009, KDDrhe department has made various contributions
2010, ECML/PKDD 2011, and IROS 2012. to this area, including two recent NIPS orals

Below, we brie y describe our research direé—zml’ 2012), where we prove that regressors

tions in more detail. We begin with a high—leve‘f"’?m escape the curse of dimensionality if the in-

overview of the broad directions, followed b |nd5|c dlr_r;ensm?:h;y (?[f the data is I0\;646],
short descriptions of a selection of projects. and provide methods 1o Increase performance
by introducing gradient weightgl81]. We have,

Theoretical studies, algorithms, and applicRowever, gradually shifted our attention to areas
tions often go hand in hand. For instance, it maf machine learning where statistical learning
be the case that someone working on a specti§eory is less well developed. These include set-
application will develop a customized algorithnfings that incorporate both labeled and unlabeled
that turns out to be of independent theoreticghta, such as semi-supervised or transductive
interest. Such serendipity is a desired side effegtrning, active learning and transfer learning,
caused by interaction across groups and reseagehwell as unsupervised learning tasks such as
areas, for instance during our frequent depaffastering, manifold learning, graph-based learn-
mental talks. It concerns cross-fertilization gfg, and the emerging eld of complex network
methodology (e.g., kernel independence megience. Our goal is to contribute statistical foun-
sures used in causal inference), the transferdqftions to these exciting new challenges where
algorithmic developments or theoretical insighisioneering work can be done.
to application domains (€.g., causal inference in active learning exploits structure and informa-
neuroscience), or the combination of differenjy, iy unlabeled data to reduce label supervision
application areas (e.g., using methods of COMyr requesting labels only for a small set of points
tational photography for MR motion correctioyom a Jarge pool. We provided novel statistical
in neuroscience). guarantees for cluster-based active learning pro-

The linear organization of the text does néedures 34 and a rst formal analysis of the
permit an adequate representation of all thegge of active learning for learning under covari-
connections. Below, we have opted for an orgte shift B41.
nization of the material that devotes individual We studied theoretical aspects of transduc-
sections to our main application areas (computie learning 47, introduced a new complexity
tional imaging, robot learning, neuroscience, amdeasure of function classes called Permutational
bioinformatics), and that comprises four methoBademacher Complexity, which is better suited
ological sections, on learning algorithms, causfr transductive problems than other popular ana-
inference, probabilistic inference, and statisticidgues, and used it to derive data-dependent gen-
learning theory. We begin with the latter. eralization bounds for transductive algorithms.
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1 Empirical Inference

One focus in the area of random geometrjtes from two distributions, to determine whether
graphs was on the limit behavior of distancihey are distinguishable to a statistically signi -
functions as the size of the graph increases. \6&nt degreel[4Z. This comprises the problem of
showed that several of the well-known distandéedependence testing as a special case, where we
functions on graphs, such as the shortest pattermine the difference between the embedding
distance or the commute distance, convergedba joint distribution and that of the product of
undesired limit functions that cannot be justihe marginals.
ed for applications. As an alternative, we con- They can be generalized to yield embeddings
structed a family of p-resistance distances theft conditional distributions, which are a core
shows an interesting phase transition behavisuilding block of a number of learning algo-
and, in certain regimes of p, does not suffer frorithms. Conditional distribution embeddings can
those problems. be used to perform Bayesian inference on graph-

We conclude with two projects connected tigal models $56, 558 607. A second applica-
other departmental research themes. For reion is in reinforcement learning, where condi-
forcement learning, we derived PAC-Bayesiaibnal expectations are used to update the state
concentration inequalities for multiple simultanef an agent given its observations and actions
ously evolving and interdependent martingal¢s62. A nal application of conditional mean
[138. We applied the inequalities to analyzembeddings is the challenging task of testing for
importance-weighted sampling and exploratiosenditional dependenc&$0, 519. This is of
exploitation trade-off in multi-armed bandit$nterest for nding which covariates contain re-
with side information $36], yielding adaptation dundant information, but also when performing
to the relevant side information and run timeausal inference, by providing a generalization
improvements. For causal inference, we devet-the well-known PC algorithm by Glymour
oped an approach posing cause-effect inferersned Spirtes that can incorporate nonlinear inter-
as binary classi cation of probability measureggctions.

We proposed a computationally ef cient algo- Although kernel methods were originally asso-
rithm based on kernel mean embeddings achigiated with statistical learning theory, our work
ing state of the art performance, and providedhas helped move them towards probabilistic ap-
risk bound for the approaci3p6. proaches. This includes our generalization of
SVMs to the case where the inputs are not point
Learning algorithms observations, but nontrivial probability measures
based on kernel methods have enjoyed cdfl5 478. This allows us to model uncertainty
siderable success in a wide range of supef-the inputs. It also provides a generalization
vised learning tasks, such as regression a®ldSVMs towards multi-scale kernel expansions
classi cation. One reason for the popularity othat naturally arise as a consequence of nontriv-
these approaches is that they solve dif cult noi#!l input measures, as well as a generalization of
parametric problems by mapping data points in®®VMs towards multi-layer systems.
high dimensional spaces of features, speci cally Kernel means are used throughout the eld
reproducing kernel Hilbert spaces (RKHSes), imowadays, and it is thus of signi cant interest
which linear algorithms can be brought to bedn study their estimation properties. This led us
leading to solutions taking the form of kernefio generalizations of classical results on Stein
expansions487). shrinkage estimatior8p, 395.

In recent years, we have developed kernelRecently, we have started exploiting kernel
mappings oprobability distributiondo RKHSes means in the context of probabilistic program-
[142. For suf ciently rich feature spaces, thesening, proposing an elegant way of representing
maps can be shown to be injectiveb, i.e., the distribution of arbitrary arithmetic functions
they represent probability distributions withousf random variables. Being a kernel method, this
any loss of information. This property is proapproach is applicable also to non-vectorial data
foundly linked to questions of optical imagingypes and accordingly holds promise for gener-
by viewing a Fraunhofer imaging process asadizing standard computing operations to distri-
particular case of kernel mappingZ43. butions over data typed §]. Further details on

Using such mappings, we can compare saow work on learning algorithms, including for
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1 Empirical Inference

the new eld of network science, is included irallow the detection of confounders in certain
the project reports below. cases 2. It also includes functional models
where the functions are implemented by Tur-
The detection and use ofng machines and the implied dependences are

statistical dependences form the core of statisti¢gt statistical ones, but characterized in terms
and machine learning. In recent years, machiéKolmogorov complexity. We have developed
learning methods have enabled us to perfo@ntheory of graphical models for such models,
rather accurate prediction, often based on larggalogous to the known probabilistic approach.
training sets, for complex nonlinear problem& uses algorithmic mutual information rather
that not long ago would have appeared coffian the usual statistical notion of mutual infor-
pletely random. However, in many situations waation, and it can be derived from a computing
would actually prefer a causal model to a purefjodel (using Turing machines) just like graphi-
predictive one; i.e., a model that might tell usal models can be derived from FCMs. Since it
that a speci ¢ variable (say, whether or not & based on algorithmic complexity of bit strings,
person smokes) is not just statistically associatéds in principle also applicable to individual
with a disease, but causal for the disease. ~ (non-statistical) observationd34, 590.

Pearl's graphical approach to causal model-2. Viewed from an FCM perspective, the cru-
ing generalizes Reichenbach's common caugiél assumption of the graphical approach to
principle and characterizes the observable stagigusality is statistical independence of all noise
tical (conditional) independences that a caug&rms. Intuitively, it is clear that as the noises
structure should entail. Many causal infereng#opagate through the graph, they pick up de-
methods build on these independences to infegndences due to the graph structure, hence the
causal graphs from data. This “graphical modessumption of initial independence allows us to
approach to causal inference has several weiglase out properties of that structure. We believe,
nesses that we try to address in our work: it ontyowever, that much can be gained by consider-
can infer causal graphs up to Markov equividg a moregeneral independence assumption
lence, it does not address the hardness of corigliated to notions of invariance and autonomy of
tional independence testing, and it usually doeégusal mechanisms. Here, the idea is that causal
not worry about the complexity of the underlynechanism are autonomous entities of the world
ing functional regularities that generate statisthat (in the generic case) do not depend on each
cal dependences in the rst place. Our work ifither, and changing (or intervening on) one of
this eld is characterized by the following threghem often leaves the remaining ones invariant.
aspects: In a rst study, we were able to show that if

1. We usually work in terms of structural equdhe effect is a deterministic invertible function
tion models (SEMSs) or functional causal modeRf the cause which satis es a suitable indepen-
(FCMs), i.e., we do not take statistical depedence condition relative to the cause distribution,
dences as primary, but rather study mechanistien this independence condition is provably vio-
models which give rise to such dependences.lfied between the effect and the inverse function
FCMs, each variable is modeled as a determiri$34, 567. We have used the general indepen-
tic function of its direct causes and some noistence assumption to connect the problems of
variableN, e.g.,Y = f(X;Z;N); all noise covariate shift and transfer learning to causality,
variables are assumed to be jointly independeanguing that the causal conditionals (or mecha-
FCMs do not only allow us to model observayisms) should often be invariant under domain
tional distributions; one can also use them igthanges360, 47(].> We have also exploited it
order to model what happens under intervele-develop methods for inferring causal graphs
tions (e.g., gene knockouts or randomized stuzised on this kind of invariance(.
ies). Our work in this domain includes the use 3. This leads to the third characteristic aspect
of restricted function classes such as additieé our work on causality. Wherever possible,
noise models, which solve the previously opeme attempt to establish connections to machine
problems of cause-effect inferené![ 624 and learning, and indeed we believe that some of

2M. Rojas-Carulla, B. Schélkopf, R. Turner, J. Peters. Causal transfer in machine learning. priprifarxiv.org/abs/
1507.053332016.
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1 Empirical Inference

the hardest problems of machine learning (suchMembers of the department have also been
as those of domain adaptation and transfer) anerested in uses of probabilistic inference for
best addressed using causal thinking. We haeinforcement learning and contrdld, 404].

shed light on the conditions under which semi- A broad new research theme has emerged
supervised learning (SSL) works, showing tha¥oundprobabilistic numericsthe description
knowledge of the underlying causal structursf computation itself as probabilistic inference.
allows us to predict whether SSL can possibMthough this work was started in the depart-
work [24, 47(). Likewise, we believe that mament and several group members are still depart-
chine learning approaches are useful in advangent members, currently we are not discussing
ing the eld of causality. Some examples includg in further detail. More on this direction can
the kernel-based tests for (conditional) indepése found in the project section on probabilistic
dence developed in our 1aBJ0, 519, our work numerics, and the separate section on the Emmy

on consistency of cause-effect inferené®(l, Noether Research Group that has arisen from it.
and the application of kernel mean embeddings
to learn and analyze cause-effect-inference as a
classi cation problem $54. _ Our Work_ in this
Our lab has played a major role in puttingomalnfocuses on howto recover an |magefrom
causal inference on the agenda of the machff¥Tupted measurements by modeling the distor-
learning community, and we expect that caus_%f?n process and so_lvm_g the resgltlng ill-posed
inference will have practical implications foflVerse problem using image priors to restore
many scienti ¢ inference problems, especiall§f'® MOSt “kel}’ Image eXplalnlng our obsgrva—
where interventions are not feasible (e.g., in 2@ns- We studied two major types of distortions:
tronomy [349 and neurosciencel, 34]). It blur and noise. The latter included learning ap-
touches statistics, econometrics, and philosopRfPaches using neural networks, some of them
and it constitutes one of the most exciting eld@®ating the state of the art BM3D algorithrbp)

for conceptual basic research in machine learftr > @S Well as a collaboration with a depart-
ing today. ment of our Stuttgart sitesp].

For the purpose of deblurring, we developed
an online method fomulti-frame blind decon-
The probabilistic volution[62( and generalized it to be able to
formulation of inference—conditioning probabilsuper-resolve and to be robust against saturated
ity measures encoding prior assumptions on giixels. To extend the applicability of deconvo-
served data by multiplying with a likelihood delution algorithms to spatially varying blur, we
scribing the data's assumed generative procespreposed th&f cient Filter Flow (EFF) model
remains one of the main research streams withjisi7(J, and combined it successfully with our
machine learning. One of our main themes wnline blind deconvolution metho@®2(. This
this eld has been nonparametric inference guaved the way to consideamera shakea ma-
function spaces using Gaussian process modelssource of non-uniform blur in photography.
[240, 371, 543. We also produced widely usedVhile it had previously been modeled as spa-
software for Gaussian process regressitf] tially invariant, real-world shake leads to spa-
and inference in generalized linear modél3(. tially variant blur that we modeled using EFF,
The central computational bottleneck ifmproving upon the state-of-the-afiq7]. By in-
Bayesian models is the marginalization of lategprporating physical constraints into the shake
variables. This can be computationaly demaritodel, we signi cantly decreased running time
ing, so approximate inference routines reducirggd improved reconstruction quality3?7, 71§.3
computational complexity are a major research Non-uniform blur also results frodens aber-
theme. This includes work on variational modelstions usually minimized through sophisti-
expectation propagatiod g, and custom-built cated lens design. Nonetheless, even profes-
approximations for speci c application232 sional lenses exhibit residual aberrations, result-
452 651], as well as general integration routinesg in smoothly varying blur that tends to get
[396 constructedde novo worse in the image corners. We developed meth-

%These methods have led to a start-up involving several department members.
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ods that automatically reduce lens aberratiohe meaningfully applied in human-inhabited en-
from images, with or without a priori knowledgevironments, robots need to possess a variety of
of the lens blur 472 535. More recently, we physical abilities and skills. However, program-
cast this into a data-driven regression frameworkjng such skills is a labor- and time-intensive
leading to what is probably the current state tdisk which requires a large amount of expert
the art B20. This has the potential to chang&nowledge. In particular, it often involves trans-
future lens designs by shifting the focus frorforming intuitive concepts of motions and ac-
expensive hardware solutions towards a comtidns into formal mathematical descriptions and
nation of hardware and sophisticated softwarelgorithms. To overcome such dif culties, we
Two relevant application areas of computase imitation learning to teach robots new motor
tional imaging are astronomy and medical imagkills [238. A human demonstrator rst provides
ing, and we brie y mention some of our workone or several examples of the skill. Informa-
in that eld, starting with the latter. Motivatedtion recorded through motion capture or physi-
by our work on camera shake removal, we asl interaction is used by the robot to automati-
sayed whether similar ideas could be appli@glly generate a controller that can replicate the
to magnetic resonance imaging (MRI) motiomovements. This step can be accomplished us-
correction The setup is different from regulaing modern machine learning techniques. Imita-
camera shake: MR images are taken by recorditign learning allows robots to learn the observed
trajectories in Fourier space (“k-space”), andl@havior and have a good starting point for self-
moving object will blur the different frequenciesmprovement. This so called self-improvement
in a way that depends on the order in which the &f the task can help the robot adapt the learned
space is scanned. By carefully modeling the dimovement to the characteristics of its own body
tortion process and imposing a sharpness prmrthe requirements of the current context. Hence,
on the resulting image, we were able to recoveven if the examples presented by humans are
excellent images from sequences that would het optimal, the robot can still use them to boot-
rendered useless for standard MR reconstratap its behavior. In our lab, imitation learning
tion algorithms. This work applies not only fohas already been used to teach complex motor
translational movements but also for rotationakills to various kinds of robots. This includes
ones P8g]. A second line of research, pursued iskills such as grasping of novel objec¥Sp, 574,
collaboration with the University of TUbingen's575, robot table tennis48, 581], ball-in-the-cup
Laboratory for Preclinical Imaging, applies md47§, throwing & catching 44, 467, 499, and
chine learning and image processing methodstather ball {55 465. Our work on grasping
combined PET-MR systems. We have developan the ICINCO 2010 Best Paper Award. New
a solution to the problem of PET attenuation camachine learning methods that can acquire mo-
rection, which was licensed to Siemens and waar skills faster are developed. The goal of this
a best paper award of the eld's agship journatesearch is to have intelligent robots that can au-
[103 205. tonomously enlarge their repertoire of skills by
In astronomy, our work initially focused onobserving or interacting with human teachers.
high-resolution imaging using deconvolution However, supervised learning is not always
[184, but we applied our expertise also to othefyf cient for motor learning problems, partly be-
astronomical data analysis problems. Recefiyse an expert teacher or idealized version of
highlights include an approach to combine hgfe pehavior is often not available. Accordingly,
erogeneous imaging data by voting methodge of our goals is the development of reinforce-
[361], as well as causal modeling methods f@hent learning methods which can handle the
light curves that have led to the discovery of §mensionality of humanoid robots and generate
number of previously unknown exoplane®] actions for seven or more degrees of freedom.
349. Ef cient reinforcement learning for continuous
states and actions is essential for robotics and
Research in robotics and arontrol [683. For high-dimensional state and
ti cial intelligence has lead to the developmendaction spaces, it is often easier to directly learn
of complex robots ranging from anthropomopolicies without estimating accurate system mod-
phic arms to complete humanoids. In order &ls. The resulting algorithms are parametric pol-
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icy search algorithms inspired by expectatiofer brain decoding, further progress in this eld
maximization methods and can be employesl contingent on a better understanding of the
for motor primitive learning 144, 178 465. neural basis of BCI control. Research has largely
Our resulting approachp5 has won the IROS focused on neural signals that provide informa-
2012 Best Cognitive Paper, and was both IRQBn on a subject's intent, neglecting those pro-
2012 Best Student Paper Finalist and Best Papesses that determine whether a subject is in
Award Finalist. a state of mind suitable for operating a BCI.
Our work on reinforcement learning (RL)n collaboration with the Institute of Medical
also comprises algorithmic and theoretical deésychology and Behavioral Neurobiology at the
velopments that are of independent interetiversity of Tubingen, we have studied the
In this context, signi cant progress has beemeuro-physiological causes of good and poor
made regarding new information theoretic RBCI-control in healthy subjects and patient pop-
approachesZ18 508 586, hierarchical RL ulations. This work has provided insights into
approaches 455, as well as structured apthe relation of attention networks and BCI-
proaches463. We also studied theoretical founperformance 149, 174, as recognized by the
dations for Bayesian RL approachégl] and annualinternational BCl Research Award 2011
the analysis of reinforcement learning algorithmend has led to a new class of cognitive BCI
in the bandit settinggd3€] and within inverse re- paradigms for patients in late stages of amy-
inforcement learningq09g. otrophic lateral sclerosis (ALSB[, 344.

Our interest in interfacing with the brain is
The notcon ned to communication. We are further
neurosciences present some of the steepest ¢gploring the use of BCI systems as assistive
lenges to machine learning. Nearly always theglevices in stroke rehabilitation. Online decod-
is a very high-dimensional input structure — pailg of movement intent in severely disabled pa-
ticularly relative to the number of exemplardients can be employed to deliver congruent hap-
since each data point is usually gathered ati@ feedback through robotic devices, thereby
high cost. To avoid over tting, inference muste-establishing the disrupted sensorimotor feed-
thus make considerable use of domain knowiack loop. This synchronization may support
edge. Relevant regularities are often subtle, thertical reorganization, hopefully resulting in en-
rest being made up of noise that may be of mu&t@nced recoverylB3. We have developed a
larger magnitude (often composed largely of tH&Cl-controlled robotic system in collaboration
manifestations of other neurophysiological praith the Neurosurgery Department at the Univer-
cesses, besides the ones of interest). In ndisgy of Tubingen, and demonstrated the feasibil-
generalizable solutions, one usually has to cadiy-of real-time haptic feedback on movement in-
tend with a high degree of variability, both bgent in healthy subjects and stroke patieri3/.
tween individuals and across time, leading to We have also designed machine learning tech-
problems of covariate shift and non-stationarityiques to assist with the interpretation of exper-
One speci ¢ heuroscienti ¢ application areamental brain data (see pagé). Unsupervised
in which we have a long-standing interest is th&arning tools were designed to automatically
of brain-computer interfacing, or BCI (see pagéentify key events in large neural recordings,
30). This research aims to construct systems treatd were an integral part of several high-impact
replace and rehabilitate lost communication aquiblications on memory-triggering evengo|
motor skills in patient populations. The contribi-60. Finding causal relationships between neu-
tion of machine learning to BCl is in developingal processes is also of particular interest to neu-
re ning, and applying algorithms to improve theoscientists, but hard to address in living neural
accuracy with which neural signals are decodaystems due to ethical and practical concerns.
Our algorithmic developments1(p, 186, 187, We have been developing causal inference tools
283 560Q) as well as improvements in experiadapted to these challengd$[174, 224, 353,
mental methodology (for example, as describeohd this work led to signi cant neuroscienti ¢
in [137, 223, 299) are signi cant contributions ndings such as the role of traveling electrical
towards making clinical BCI systems a reality.waves in routing sensory information across the
In addition to the advancement of methoddsual cortex B4]. Machine learning also pro-
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vided theoretical insights into biological learnindpiology. While these activities have been signi -
by showing that observed properties of synaptantly reduced, they overlapped with the report-
plasticity are optimal for neurons to learn undéng period and will thus brie y be included.
metabolic constraints imposed by limited ener-Genetics has witnessed an impressive increase
getic resources9p, 473. in datasets that contain detailed information both
We conclude this section with a short sunabout the genetic properties of individuals and
mary of our contributions to cognitive sciencéheir appearance properties, that is about their
and vision research, performed in collaboratig@enotypeand phenotype Large genetics con-
with Felix Wichmann, professor of computasortia around the world are recording single-
tional neuroscience at the local University Tiibiucleotide polymorphisms (SNPs), i.e., single
gen and part-time member of our department. g&nome bases that differ between individuals, for
one line of work, we use machine learning t@rge sets of individuals. The standard technique
uncover the behaviorally relevant features dis-then to compute which of thesé® to 10
servers use in complex perceptual tasks: givg@nome positions correlate most strongly with
high-dimensional sensory input, which are tHée disease status. Due to the enormous compu-
features that sensory systems base their comptagional costs that an exhaustive scan for, say,
tions on? We have applied our methods succeb@* candidate pairs would entail, these studies
fully to visual saliency 290, gender discrimina-usually ignore any interactive effect between ge-
tion [247], and auditory tone-in-noise detectiomomic loci, although these are believed to be
[148. We have also published a discussion #hportant in many diseases. We have developed
the application of kernel methods in the agshipew engineering approaches and mathematical
journal of cognitive science?B9. A second fo- results to tackle this fundamental computational
cus is the development of a predictive imageroblem in Statistical Genetic§13.
based model of spatial vision. We integrated Another recent area in Computational Biology
the large psychophysical literature on simple de-Molecular Genomics, in which new sequenc-
tection and discrimination experiments and pring technologies enable an unprecedented wealth
posed a model based on maximum-likelihood def-data for exploring the structure of the genome
coding of a population of model neurori)f. and of individual genes. We have developed sev-
eral tools to detect genes within the genome, and
to establish a ne-grained picture of gene struc-
In the past, the departmenture and of the impact of sequence variation on
was active in several branches of computatiorgdne expression level8]2 313 65(.
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1 Empirical Inference

Machine learning algorithms are designed &etting p40Q.

yield accurate predictions on future data by gen-\we showed the rst statistical consistency re-
eralizing from past observations. The main gog|,it (under surprisingly general distributional
of learning theory is to analyze their statisticglynditions) for additive noise methodsdausal

and computational properties, and to provide P#iference[400. Further, we posed the problem
formance guarantees on the new data. To do §pcause-effect inference as binary classi ca-
it poses these tasks in a rigorous mathematiggl, of probability measures, proposed a com-
framework and deals with them under varioystationally ef cient algorithm based on kernel
assumptions on the data-generating process. mean embeddings achieving state-of-the-art per-

~ PAC-Bayesian analysis (Probably Approx- formance, and provided a risk bound for the ap-
imately Correct) provides guarantees on th%roach B56 .

generalization ability of randomized predictors
within the classical PAC framework. We derive?a

general PAC-Bayesian inequalities which allo e nal goal of correctly labeling the test points.

to control the concentration of weighted aver- . )
. . e have introduced a new complexity mea-
ages of possibly uncountably many simultane-

. . . sure of function classes called Permutational
ously evolving and interdependent martmgal??ademacher Complexitv. araued that it is bet-
[139. We applied these inequalities tontex- piexity, arg

. . er suited for analysis of transductive learning
tual bandits providing a new regret bound an .
. . han other popular measures of complexity, and
learning algorithm$36].

We have studied the relations and differencfaflsem/(:"d a general risk bound for transductive al-

betweervapnik-Chervonenkis (VC) andPop- gorithms based on itf2].
per's dimensions While both VC and Popper's Active learning exploits structure and infor-
dimensions aim to quantify the process of falsi mation in unlabeled data to save label supervi-
cation, the rst focuses on passive falsi catior$ion- The goal is to ask for only a small sub-
based on examples provided by nature, wherexd of the data to be labeled while maintaining
the latter focuses on active falsi cation throug§00d performance. We provided novel statistical
experiment design. We have shown that Concegﬂéarantees for a large class of practical cluster-
that are related to Popper's notion of falsi abilb@sed active learning procedurég(j. We fur-
ity occur in the domain of query-learning anéher showed that an algorithmic technique from
derived relations between Popper's, exclusigRargin-based active learning yields a compu-
and VC-dimensiong77. tationally ef cient learner for linear separators
We have analyzed how the performance ypder conditions that had earlier been shown to
learning algorithmsadapts to local structure allow for fast statistical learning rates (Massart
in the data, which often helps when the ambieRpise condition) $39.
dimension is huge. We established that certainWe also provided a rst formal analysis of the
regression procedures, such as kernel and k-NBe of active learning fodlomain adaptation,
regression, adapt to a locally low intrinsic dimenhat is, to use a learner's active querying abil-
sion [439 546. Further, we have shown how tdty to adapt to changes in the data generation.
improve regression performance by adapting thige proposed a new active learning strategy and
learning process to differing variability in variproved that it consistently learns in situations
ous coordinates of the function to be estimatehere no passive learning algorithm is consis-
[481]]. For this, we proposed a novel, consistei¢nt, while automatically adapting its amount of
estimator for gradient norms. We also developéabel queries to what is needed due to the under-
new data-structures for regression in a streamilying data shift B41].

In transductive learning the learner observes
beled training and unlabeled test points with

More information:https://ei.is.tuebingen.mpg.de/project/learning-theory
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1 Empirical Inference

Figure 1.1: Left: Shortest path (in red) in an unweighted k-nearest neighbor graph on a random set of points. The
path is far from the straight line between the two end points. Middle and right: a toy data set (middle) and its Isomap
reconstruction based on the shortest path distance in the unweighted kNN graph. The reconstrution does not
preserve the density information of the original data set.

Random geometric graphsare built by rst expected time it takes the natural random walk
sampling a set of points from some underlyingtarting in vertexu to travel to vertex and back.
distribution, and then connecting each point tbis widely used in machine learning because it
its k nearest neighbors. In this project we invesdpposedly satis es the following, highly desir-
tigated the behavior of distance functions on raable property: Vertices in the same cluster of the
dom geometric graphs when the sample sizegraph have a small commute distance, whereas
goes to in nity (and the connectivity parametevertices in different clusters of the graph have a
k scales appropriately). large commute distance to each other. We studied

It is well known that in graphs where thehe behavior of the commute distance as the num-
edges are suitably weighted according to thdier of vertices in the graph tends to in nit$99,
Euclidean lengths, thehortest path distance proving that the commute distance between two
converges to the underlying Euclidean distangmints converges to a trivial quantity that only
However, it turned out this is not the case fdakes into account the degree of the two vertices.
unweighted KNN graphsip]]. In this case, the Hence, all information about cluster structure
shortest path distance converges to a distammds lost when the graph is large enough.
function that is weighted by the underlying den- To alleviate this shortcoming, we proposed
sity and takes wide detours to avoid high densitlie family of p-resistanceqd497]. Forp =1 it
regions (see left gure above). In machine learneduces to the shortest path distance pfer2
ing applications, this behavior of the shortedtcoincides with the resistance distance, and for
path distance can be highly misleading. As gn! 1 it is related to the minimas-t-cut in
example, consider the Isomap algorithm and tiee graph. The family shows an interesting phase
data set shown in the middle gure. If we buildransition: there exist two critical thresholds
an unweighted KNN graph based on this data aaddp such thatifp < p , then thep-resistance
apply Isomap to recover the point con guratiordepends on meaningful global properties of the
we get the gure on the right. Obviously, it isgraph, whereas ip > p , it only depends on
grossly distorted and cannot serve as a faithtuvial local quantities and does not convey any
representation of the original data. useful information. In particular, theresistance

The commute distance(akaresistance dis- for p = p nicely reveals the cluster structure.
tance) between vertex andv is de ned as the

More information:https://ei.is.tuebingen.mpg.de/project/distance-functions-on-random-geometric-graphs
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1 Empirical Inference

Figure 1.2: Overview of the application of kernel mean embedding in [43]. Together with the reduced set (RS)
techniques to limit the complexity of the RKHS expansion, the kernel mean embedding is used to approximate the
embedding of the functional of random variables Z = f (X;Y ).

A Hilbert space embedding of distributiongre statistically independent) is a special case.
(KME)—which generalizes the feature map oA further application of the MMD as indepen-
individual points to probability measures—hadence criterion is in feature selection, where we
emerged as a powerful machinery for probabilistaximize dependence between features and la-
tic modeling, machine learning, and causal disels [L43. We have further developed alternative
covery. The idea behind this framework is to mapdependence tests based on space partitioning
distributions into a reproducing kernel Hilberapproaches and classical divergence measures
space (RKHS) endowed with a kerriellt en- (such as the; distance and KL-divergence)
ables us to apply RKHS methods to probabilify268. Lastly, we also constructed the test for
measures and has given rise to a great deal ofrren-i.i.d. data such as time-series i[].

search and novel applications of kernel methodsgijyen that the MMD depends on the particular
Given an i.i.d. samplexy;xo;:::;xn from kernelthatis chosen, we proposed two kernel se-

P, the most natural estimate of the embeddihgction strategies]94], the earlier one relying on

p = Eplk(X; )] is an empirical averager = a classi cation interpretation of the MMD, and
(1=n) L, k(xi; ). In [35, 370, we showed the later one explicitly minimizing the probabil-
that this estimator is not optimal in a certaiity of Type Il error of the associated two-sample
sense. Inspired by James-Stein estimator, i@t (that is, the probability of wrongly accepting
proposed the so-called kernel mean shrinkadt two unlike distributions are the same, given
estimators (KMSEs) which improves upon theamples from each).
standard estimator. A suitable explanation for We have also used the KME to develop a vari-
the improvement is a bias-variance tradeoff: thgt of an SVM which operates on distributions
shrinkage estimator reduces variance substgither than points4[7§, permitting modeling
tially at the expense of a small bias. In additionf input uncertainties. One can prove a gener-
we presented a class of estimators called spectiized representer theorem for this case, and in
shrinkage estimators i395 which also incorpo- the special case of Gaussian input uncertainties
rates the RKHS structure via the eigenspectrusnd Gaussian kernel SVMs, it leads to a multi-
of the empirical covariance operator. Our empgeale SVM, akin to an RBF network with vari-
ical studies suggest that the proposed estimatatsie widths, which is still trained by solving a
are very useful for “larg@, smalln” situations quadratic optimization problem. 1356, we ap-
(e.g. medical data, gene expression analysis, aiiéd this framework to perform bivariate causal
text documents). inference betweeX andY as a classi cation

A natural application of KME is in testing forProblem on joint distributiofP(X; Y ). Another
similarities between samples from distributioniteresting application is in domain adaptation
We refer to the distance between two distrib[£07, 676. This idea has also been extended to
tion embeddings as the maximum mean discrélgvelop a variant of One-class SVM that oper-
ancy (MMD). We have formulated a two-sampl@tes on distributions, leading to applications in
test [147] (of whether two distributions are thedroup anomaly detectiont[5.
same), and showed that the independence test (oA recent application uses kernel means in visu-
whether two random variables observed togethaization. When using a power-of-cosine kernel
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1 Empirical Inference

for distributions on the projective sphere, thehowed the conditional mean embedding to be
kernel mean can be represented as a symnaesolution to a vector valued regression prob-
ric tensor. In the context of diffusion MRI, thidem [497, which allows us to formulate sparse
permits an ef cient visual and quantitative anaéstimates. The second application is to reinforce-
ysis of the uncertainty in nerve ber estimatespent learning. In491], we estimate the optimal
which can inform the choice of MR acquisitiorvalue function for a Markov decision process
schemes and mathematical moddl$Q, 38§. using conditional distribution embeddings, and
A natural question to consider is whether thiae associated policy. This work was general-
MMD constitutes a metric on distributions, anikzed to partially observable Markov decision pro-
is zero if and only if the distributions are theesses in{67], where the kernel Bayes' rule was
same. When this holds, the RKHS is said to hesed to integrate over distributions of the hidden
characteristic. We have determined necessatgtes.
and suf cient conditions on translation invari- Another important application of conditional
ant kernels for injectivity, for distributions onmean embeddings is in testing for conditional
compact and non-compact subset®8f253: independence (Cl). We proposed a Kernel-based
speci cally, the Fourier transform of the kerConditional Independence test (KCl-tesilf
nel should be supported on all &Y. Gaus- which avoids the classical drawbacks of Cl test-
sian, Laplace, and B-spline kernels satisfy thisg. Most importantly, we further derived its
requirement. The MMD is a member of a largeasymptotic distribution under the null hypoth-
class of metrics on distributions, known as thesis, and provided ways to estimate such a dis-
integral probability metrics (IPMs). In [16, 4]tribution. Our method is computationally appeal-
we provide estimates of IPMs &&f which are ing and is less sensitive to the dimensionality
taken over function classes that are not RKHS®H,Z compared to other methods. This is the
namely the Wasserstein distance (functions in thst time that the null distribution of the kernel-
unit Lipschitz semi-norm ball) and the Dudlepased statistic for Cl testing has been derived.
metric (functions in the unit bounded LipschitRecently, we proposed a new permutation-based
norm ball), and establish strong consistency 61 test [39( that easily allows the incorporation
our estimators. Comparing the MMD and thes# prior knowledge during the permutation step,
two distances, the MMD converges fastest, ahds power competitive with state-of-the-art ker-
at a rate independent of the dimensionatityf nel CI tests, and accurately estimates the null
the random variables — by contrast, rates for tlléstribution of the test statistic, even as the di-
classical Wasserstein and Dudley metrics worserensionality of the conditioning variable grows.
whend grows. Lastly, we have recently leveraged the KME
Embeddings of distributions can be generath computing functionals of random variables

tions. The rst application is to Bayesian infertous in various applications such as probabilistic
ence on graphical models. We have developpabgramming. Our approach allows us to obtain
two approaches: in the rsb6 607, the mes- the distribution embedding & directly from

to smoothness constraints; these were orderssofting to density estimation. It is in principle
magnitude faster than competing nonparamapplicable to all functional operations and data
ric BP approaches, yet more accurate, on praypes, thank to the generality of kernel methods.
lems including depth reconstruction from 2-Based on the proposed framework, we showed
images and robot orientation recovery. In tHsow it can be applied to non-parametric struc-
second approaclbbg, conditional distributions tural equation models, with an application to
P(YjX = x) are represented directly as embedausal inference. As an aside, we have also de-
dings in the RKHS, allowing greater generalityeloped algorithms based on distribution embed-
(for instance, one can de ne distributions ovating for identifying confoundersi?], which is
structured objects such as strings or graphs, fare of the most fundamental problems in causal
which probability densities may not exist). Wénference

More information:https://ei.is.tuebingen.mpg.de/project/kernel-distribution-embeddings
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1 Empirical Inference

Optimization lies at the heart of most machingeneralization performance.

learning algorithms. The key aspects of the ap-A contribution that lies at the interface of com-

Phcatlor_]S n Wh.'Ch thc_ese algor_lthms are app“ek()ilnatorial and convex optimization is presented
include: high-dimensional, noisy, and uncertalrr11 [444). General purpose convex methods of-
Qata, huge volumes of batch or streammg_ da gh rely on key subroutines such as projection
intractable models, low accuracy, and reliance - .
: Oa[\d proximity operators. Continuing our effort
imations. The success of most machine Ieaﬁem the previous SAB assessment towards de-
. ; ... veloping a library of highly tuned subroutines,
ing algorithms depends on how the optlmlzatlog. ., for total variation, we extend to multivariate

techniques can adapt and exploit these fac% Al variation in B65. A ourishing sub- eld

Our interests are broadly divided into two cate- LSRR R
. of convex optimization is “Robust optimization
gories, convex and non-convex methods.

which seeks to optimize models under parame-
ters/data uncertainty. It intersects with the usual
min-max theory in statistics, and can be used
to offer a different view of regularization in ma-
chine learning. In 30], we introduced the no-
tion of robust optimization for matrix comple-
tion/recovery problems. The actual application
was to recover correlation matrices under a sim-
ple bounded uncertainty model.

Figure 1.3: The Rosenbrock function, a non-convex func- Non-convex Optimization In the domain of
tion which serves as a test-bed for optimization algo- Nnon-convex optimization for large-scale prob-
rithms ( gure taken from Wikipedia) lems, our work $73 presents a simpli ed anal-

Convex optimization In the realm of meth-ysis of what, to our knowledge, is the rst
ods for convex optimization, we have addressedn-convex, non-smooth incremental proximal
research challenges under various different prabethod. This work started in 2011; interestingly,
lem settings. For large-scale problems, wheirerecent years, the interest in incremental meth-
scalability is an important aspect, a summaogs has sky-rocketed, though the analysis is lim-
overview of large-scale aspects of convex ojted only to the convex case. Finally, we mention
timization appears in our work6[/g. A theo- a new direction in nonconvex optimization of-
retically optimal large-scale convex method fdered by our recent workid 3, which introduces
problems with linear constraints is presented fiGeometric optimization” on the manifold of
[366 which develops a new stochastic alterngiesitive de nite matrices. The underlying idea is
ing direction method of multipliers (ADMM) to develop a theory of convexity along geodesics
method that combines Nesterov's accelerated the Positive Semi-De nite manifold. This
gradient methods with ADMM. work also identi es some basic calculus rules for

For learning classi ers in extremely large oudetection and construction of geodesically con-
put spaces, we have proposed a parallelizalgbx functions on the Positive De nite manifold,
mixed-norm regularization approach leading ®nd as an application presents new algorithms
convex but non-smooth optimization in our rder solving maximum likelihood estimation for
centwork B16. We show that the resulting modelliptically contoured distributions, which de-
els can be orders of magnitude smaller than masgiite non-convexity remain tractable thanks to
state-of-the-art methods and also lead to bettggrodesic convexity.

More information:https://ei.is.tuebingen.mpg.de/project/optimization-and-large-scale-learning
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We are interested in developing machine leamillion sites over a one year period. We nd that
ing and large-scale data mining methods ftine diffusion network of news tends to have a
the analysis, modeling and control of large realere-periphery structure with a small set of core
world networks and processes that take plasedia sites that diffuse information to the rest of
over them. We addressed mainly two problenthe Web.
network inference and in uence maximization. However, both algorithms force the transmis-

Network inference Observing a diffusion sion rates between all nodes to be xed and static
process often reduces to noting when nodes (peand not inferred. To overcome this limitation,
ple, blogs, etc.) reproduce a piece of informae then developed the algorithm NetRa®é,[
tion, get infected by a virus, or buy a producs75 418 517, which allows transmission at
Epidemiologists can observe when people lmifferent rates across different edges, possibly
come ill but they cannot tell who infected thenime-varying, so that we can infer temporally
or how many exposures and how much time wagterogeneous interactions within a network. Ne-
necessary for the infection to take hold. In itRate infers both structure and the temporal dy-
formation propagation, we observe when a blawmics of the underlying network with provable
mentions a piece of information. However if, aguarantees using convex optimization. We study
is often the case, the bloggers do not link to theine evolution of information pathways in the on-
sources, we do not know where they acquirdide media space and nd that information path-
the information or how long it took them to postvays for general recurrent topics are more stable
it. Finally, viral marketers can track when cuscross time than for on-going news events. Clus-
tomers buy products or subscribe to servicésts of news media sites and blogs often emerge
but typically cannot observe who in uenced cusnd vanish in matter of days for on-going news
tomers' decisions, how long they took to makevents. Major events involving civil population,
up their minds, or when they passed recommesuch as the Libyan's Civil War, lead to an in-
dations on to other customers. We observe whaemeased amount of information pathways among
and when but not how or why information (bélogs as well as in the overall increase in the net-
it in the form of a virus, a meme, or a decisionyork centrality of blogs and social media sites.
propagates through a population of individuals.In uence maximization In this problem, one
The mechanism underlying the process is hi@ms to select the most in uential source node
den. However, the mechanism is of outstandisgt of a given size in a diffusion network. A diffu-
interest, since understanding diffusion is necessn process that starts in such an in uential set
sary for stopping infections, predicting memef nodes is expected to reach the greatest number
propagation, or maximizing sales of a productof nodes in the network. Although the problem

In our work, we formulated a generative proltlepends dramatically on the underlying temporal
abilistic model of diffusion that aims to describelynamics of the network, this was largely unex-
realistically how diffusion occurs over time implored. In our work, we developed an in uence
a network. First, we developed two algorithmestimation, In uMax 58§, which accounts for
Netinf [133 566 and MultiTree B57], which the temporal dynamics underlying diffusion pro-
use submodular optimization to infer the strucessesj12. Later, we developed a very ef cient
ture of a diffusion network from diffusion tracesn uence estimation method, ContinEst49,

We demonstrate the effectiveness of our algehich can be used in combination with In uMax
rithm by tracing information cascades in a séb scale up in uence maximization to networks
of 170 million blogs and news articles from 3.8vith million of nodes.

More information:https://ei.is.tuebingen.mpg.de/project/structure-and-dynamics-of-diffusion-networks
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Figure 1.4: Visualization of a technique called “half-sibling regression” which corrects measurement errors. Mea-
suring X allows us to remove parts of the systematic noise N from Y, which yields a better estimation of Q (the
quantity of interest).

Causal Discoveryin causal discovery, we try[625.
to learn a causal structure from data. This strucExample (2): Information Geometric Causal
ture may be a directed acyclic graph (DAG) umference (IGCI)While the above methods in-
derlying a functional causal model (FCM), andlerently rely on noisy causal relations, statisti-
possibly also the functions in the FCM. Withoutal asymmetries between cause and effect also
further assumptions, this goal is impossible tgppear for deterministic relations. We have con-
achieve: given only an observational distributiosidered the case whehe = f (X) andX =
P, we can nd an FCM generating for any f 1(Y), for some invertible functiof, the task
graphG s.t. P is Markovian w.r.t.G, i.e., the being to tell which variable is the cause. The gen-
underlying graph is not identi able. We inveseral assumption of independence of causal mech-
tigate assumptions that make the graph idenrtiisms P34 implies thatP (X ) andP (YjX)
able from the observational distribution, andghould be independent¥ causesr . Choosing
develop algorithms building on those assump{X ) andf independently implies tha (Y)
tions. We now provide some examples, and ref@inds to have high probability density in regions
to the literature for further papers that we cannatheref ! has large Jacobian. This observa-
discuss below353 358 401, 422, 51§|. tion can be made precise within an informa-

Example (1): Additive Noise Modelm ad- tion theoretic frameworki[34, 562. Applying
ditive noise models, the functional assignmengshon-lineaf to P (X') decreases entropy and
used in the FCM are of the ford = f (X;Y )+ increases the relative entropy distance to Gaus-
N . The subclass of linear functions and additi&ans, provided that a certain independence be-
Gaussian noise does not lead to identi abilitiwveenf andP (X) is postulated which can be
This, however, constitutes an exceptional settiftfirased as orthogonality in information space.
If one assumes either (i) non-Gaussian noise, (ii)A second approach, for linear invertible rela-
non-linear functions in the FCVB, 624 or (iii) tions between multi-dimensional variables, is re-
all noise variables to have the same variance, dated in spirit: if the covariance matrix of and
can show that additive noise models are ideritie structure matrix relating andY are chosen
able. Methods that are based on additive noisedependently, directions with high covariance
models perform above chance level not only @f Y tend to coincide with directions correspond-
arti cal data but also on the set of cause-effedtg to small eigenvalues @ 1, which can be
pairs that we have collected over the last yeagzgecked by a formula relating traces of covari-
[36]. A similar result holds if all variables areance matrices with traces of the product of struc-
integer-valued$89 or if we interpret the addi- ture matrices with their transposgil[g 571].
tivity in Z=kZ [200. The concept of additive Example (3): Invariant Predictionn many
noise has been extended to time series, 488]] situations, we are interested in the system's be-
as well as to the identi cation of confounderdiavior under a change of environment. Here,

Max Planck Institute for Intelligent Systems, Stuttgart Tibingen | Research and Status Report 2010 — 2015 | Part |



1 Empirical Inference

causal models become important because tlodlyer, and which part is due to other causal paths.
are often invariant under those changég(]. We propose an information-theoretic measure
Following the assumption of independence dfat satis es all our postulates. It coincides with
causal mechanisms, localized changes of somatual information for a DAG with two nodes;
noises or mechanisms of a causal model will d6r more complex DAGs it correctly removes the
ten leave other conditionals invariant, and thusieformation propagated via alternative paths.
causal prediction (which uses only direct causesCausal Inference in Machine LearningWe

of the target variable as predictors) may remalrelieve that causal knowledge is not only useful
valid even if we intervene on predictor varifor predicting the effect of interventions, but that
ables or change the experimental setting. Wesome scenarios causal ideas can also improve
can exploit this for causal discovery: given dathe performance of classical machine learning
from different experimental settings, we use imethods. Again, we concentrate only on two ex-
variance as a criterion to estimate the set afmples and refer to some other papé&& f77.
causal predictors for a given target variable. This Example (6): Semi-supervised Learniqyur
method also leads to valid con dence intervalsork [47( discusses several implications of the
for causal relations0]. independence of cause and mechanism (as a spe-

Example (4): Hidden Confounding in Tim&ial case of a more general independence prin-

Series.Assume we are given a multivariat&'Pl€) for standard machine learning. Let us as-
time serieX1::: 1 : X of measurements. In thisSUMe thaty’ is predicted fromX . We have ar-

project, our goal is to infer the causal structu@'€d that semi-supervised learning (SSL) does
| not help ifX is the cause oY (‘causal learn-
unobserved confound€Z )¢,z (which other ap- mg’?, whereas It ofte_n h:elps W 'S the cause of .
proaches such as Granger causality cannot t'?én( anticausal learning”). This is because addi-

dle). We assume a vector autoregressive cauifja! observations ok only tell us more about
P (X) —which is irrelevant in the case of causal

prediction because the prediction requires infor-
Xe ._ B C X1 N, Mation about théndependenbbjectP (YjX).
VAR D E Zi 1 " Our meta-study analyzing results reported in the
o . SSL-literature supports this hypothesis: all cases
Restricting the model class to non-Gaussian {fjrere ssL helped where anticausal, confounded,
dependent noisgN )tz makes3 andC essen- o o, amples where the causal structure was un-
tially identi able [351]. We show thaD =0 is  |oar To elaborate on the link between causal di-
another suf cient restriction of the model Classrection and performance of SSL, we studied the
Example (5): Causal Strengtin real-world toy problem of interpolating a monotonically in-
applications a measure of tegengthof a causal creasing function for the case where the relation
in uence is often required. This is a challengsetweenX andyY is deterministic £4]. In such
ing question, even if the causal directed acycl&cscenarid? (X ) can be shown to be bene cial
graph and the joint distribution are perfectlfor predictingY from X wheneveP (X jY) and
known. We have formulated a set of postulat€yY) satisfy a certain independence condition
that a measure of causal strength of an arrow g@hich coincides with the one postulated in our
of a set of arrows) in a causal network should saterk on information-geometric causal inference
isfy [94]. We show that none of the measures 134).
the literature satis es all postulates, and describeFigurel.4, nally, visualizes the idea of a re-
examples where they therefore lead to poor tent method for correcting measurement errors
sults. This includes well-known approaches likealled “half-sibling regression:” subtracting the
Granger causality and transfer entropy for timmonditional expectation of givenX fromY
series, and also measures for general graphs. Tha provide a better estimation of the quan@ty
main problem is to quantify which part of theof interest than the noisy measuremntwhich
statistical dependences between two variablediss been used i3{9 to process astronomical
due to a direct causal in uence of one on thight curves for the detection of exoplanets.

More information:https://ei.is.tuebingen.mpg.de/project/causal-inference
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Figure 1.5: Systems of high variability can bene t from probabilistic dual control. To illustrate this, 50 different
parameter sets (horizontal) are simulated for 5 different controllers (vertical). The colour indicates overall cost, from
dark blue (low) to dark red (high).

Uncertainties have long been recognized emputs that provides safety in the form of stabil-
a key dif culty for control, deteriorating perfor-ity and constraint satisfaction and minimizes a
mance or even putting system safety at risk. Thi®rformance objective.

issue has been classically addressed by robusjye jnyestigate the use of learning-based iden-
controller design, making use of a deterministi¢ . 4(ion methods for integration in an MPC con-
bound on the uncertainty and designing the cqsjer, offering an ideal framework to incorpo-
tr.oller for all possmle uncertainty reallza%tlon%lte probabilistic predictions based on online
Tight uncertainty bounds are, however, dif Culyjais ‘pDye to their exibility, Gaussian processes
to obtain, I|m'|t|ng performance in practlceZ a’?E’GP) are used to model complex system behav-
robust techniques generally suffer from signij, ¢ and, most importantly, characterize the cor-
cant computational complexity. responding model uncertainty. The workd]
The scope of this resea_lrch is to develop nepWoposed a modeling and control approach us-
methods and tools for high performance angy Gaussian processes to predict time-periodic
computationally ef cient control of uncertaing rors that are then compensated by a predic-

complex systems. We take a probabilistic agye controller, which was demonstrated for high
proach, considering that the uncertainty aﬁecm}ﬂecision control of a telescope mount.
the system has a probabilistic nature. In contrast

to common stochastic control methods, a keyPual control A key challenge of simultane-
feature of the developed techniques is that th@yfS control and system identi cation is that the
enable an online identi cation of the uncertaintfONtrol action in uences not only the perfor-
distribution to maximize system performancgance, but also the uncertainty in the dynamics.
while providing (probabilistic) guarantees on thghls is also called the exploration-exploitation
closed-loop system characteristics. The methd{fade-off. Dual control offers one way to address

thereby leverage an interplay of probability, réPiS trade-off by considering the control of the
bustness, and adaption. dynamical system augmented by the unknown

While uncertainties can enter controllers jRarameters. While the exact dual controller is
various forms, we focus on model-based contrfitractable, available approximations generally

techniques with model uncertainties due to hiignnot maintain all core features: caution, explo-
system complexity or due to the environmerigtion and the future value of information.
The challenge is that learning happens in closedWe have derived a tractable approximation of
loop, i.e., 1) the resulting model is directly critthe dual control formulation that aims at main-
ical for both performance and safety at evetgining these features, in particular the value of
time step and, 2) control and system identi caaformation, and have extended the technique to
tion have to be performed simultaneously.  general nonlinear systems. The developed dual
Learning-based model predictive control control framework has been applied in simula-
Model predictive control (MPC) makes use dfon to the problem of building control, providing
predictions of the system and the environment gimultaneous identi cation and control guided
order to optimally choose a sequence of contrioy electricity prices, weather, and occupancy.

More information:https://ei.is.tuebingen.mpg.de/project/probabilistic-control
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Arti cial intelligent systems build models of such bridges between computation and inference
their environment from observations, and chooseross the domains of numerical computation, by
actions that they predict will have bene cial efshowing that various basic numerical methods
fect on the environment's state. The mathemadire MAP estimates under equally basic proba-
cal models used in this process call for computaitistic priors: quasi-Newton methods, such as
tions that have no closed analytic solution. Learthve BFGS rule, arise as the mean of a Gaus-
ing machines thus rely on a whole toolbox of ngtan distribution over the elements of the inverse
merical methods: high-dimensioriategration Hessian matrix of an optimization objectivel]
routines are used for marginalization and condigg, 448. This result can be extended to linear
tioning in probabilistic models. Fitting of paramsolvers B9, in particular the linear method of
eters poses nonlinear (often non-convepji- conjugate gradients (Gaussian regression on the
mizationproblems. Predicting dynamic changeslements of the inverse of a symmetric matrix).
in the environment involves solvirdjfferential Regarding ordinary differential equations, some
equations In addition, there are special casdRunge-Kutta methods can be interpreted as au-
for each of these tasks in which the computregressive lters 97, returning a Gaussian
tion amounts to large-scalimear algebra(i.e. process posterior over the solution of a differen-
Gaussian conditioning, least-squares optimizel equation.
tion, linear differential equations). Traditionally, . . .

. . The picture emerging from these connections
machine learning researchers have served these

. . a mathematically precise description of com-
needs by taking numerical methods “off the she\ o yP . P :
. putation as the active collection of information.
and treating them as black boxes.

In this view, the analytic description of a numeri-

Since the 1970s, researchers like Wahba, Dial task provides a prior probability measure over
conis, and O'Hagan repeatedly pointed out thapssible solutions, which can be concentrated
in fact, numerical methods can themselves be through conditioning on the result of tractable
terpreted as statistical rules—more precisely, e@smputations. Many concepts and philosophical
acting machines, since they take decisions abgubblems from statistics carry over to computa-
which computations to perform: they estimat#gon quite naturally, with two notable differences:
an unknown intractable quantity given knownrst, in numerical “inference” tasks, the valid-
tractable quantities. For example, an integratigty of the prior can be analyzed to a higher for-
method estimates the value of an integral givemal degree than in inference from physical data
evaluations of the integrand. This is an abstrasburces, because the task is speci ed in a for-
observation, but Diaconis and O'Hagan sepa&al (programming) language. Secondly, since
rately made a precise connection between infaazmerical routines are the bottom, “inner loop”
ence and computation in the case of integratidayer of arti cial intelligence, they must curtail
several classic quadrature rules, e.g. the trapemputational complexity. This translates into a
zoid rule, can be interpreted as the maximumcanstraint on acceptable probabilistic models—
posteriori (MAP) estimator arising from a familymost basic numerical methods make Gaussian
of Gaussian process priors on the integrand. assumptions.

Over recent years, the research group on probin the machine learning context, the descrip-
abilistic numerics has been able to add motien of computation as the collection of informa-
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1 Empirical Inference

tion has opened a number of research directiottgat accept probability measures over a numeri-
(1) Once it is clear that a numerical methodal problem as inputs, and return another proba-
uses an implicit prior, it is natural to adapt thibility measure over the solution of the problem,
prior to re ect available knowledge about thevhich re ects both the effect of the input un-
integrand. This design of “customized numericsertainty, and uncertainty arising from the nite
was used in a collaboration with colleagues ptecision of the internal computation itself. A
Oxford to build an ef cient active integrationposition paper37] motivates this class of algo-
method that outperforms Monte Carlo integrathms, and suggests their use for the control of
tion methods in wall-clock time on problems o€omputational effort across composite chains of
moderate dimensionality3p4|. computations, such as those that make up intel-
ligent machines. In collaboration with the Opti-
mization group at the German Cancer Research
Center we developed approximations to propa-
gate physical uncertainties through the optimiza-
tion pipeline for radiation treatment, to lower the
risk of complications for patientsi[L1, 437].

(2) Many numerical problems are de ned rel-
ative to a setup that is itself uncertain to be-
gin with. Once numerical methods are de ned
as probabilistic inference, such uncertainty can
often be captured quite naturally. In a collabo-
ration with colleagues in Copenhagen, it was
shown 354, 369, 399 how uncertainty arising
from a medical imaging process can be prop-
agated in an approximate inference fashion toln a separate but related development, a com-
more completely model uncertainty over neuratunity has also arisen around the formulation of
pathways in the human brain. global optimization as inference, and the formu-
(3) Explicit representations of uncertainty catation of sample-ef cient optimization methods.
also be used to increase robustness of a cdrheseBayesian Optimizatiomethods can, for
putation itself. Addressing a pertinent issue example, be used to structurally optimize and
deep learning, we constructed a line searalitomate the design of machine learning models
method B21]—a building block of nonlinear themselves. We contributed to this area with the
optimization methods—that is able to use gradievelopment of the Entropy Searct8H algo-
ent evaluations corrupted by noise. The resuithm that automatically performs experiments
ing method automatically adapts step sizes fexpected to provide maximal information about
stochastic gradient descent. the location of a function's extremum.

Probabilistic numerics is emerging as a new
area at the intersection of mathematics, computer
science and statistics. As co-founders, the re-
search group on probabilistic numerics plays
a central role in its development. The wider
Intelligent Systems community, with their in-
tractably large data streams and non-analytic
model classes, are simultaneously contributors
and bene ciaries: equipping computational rou-
tines with a meaningful notion of uncertainty

(4) More generally, it is possible to de nestands to increase both the ef ciency and relia-
probabilistic numerical methodsAlgorithms bility of intelligent systems at large.

More information:https://ei.is.tuebingen.mpg.de/project/probabilistic-numerics
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Figure 1.6: In many real-world imaging applications, the common assumption of stationary blur does not hold.
Examples that exhibit non-stationary blur include e.g. camera shake, optical aberrations, and atmospheric turbulence.
We derived a mathematically sound and physically well-motivated model, which allows to express and ef ciently

compute spatially-varying blur [570] . Our “Ef cient Filter Flow” framework substantially broadens the application
range of image deconvolution methods. In a number of challenging real-world applications [26, 320, 472, 535, 537,
570] we demonstrated both the validity and versatility of our approach.

Digital image restoration as a key area of si§y drawing a connection between Fraunhofer
nal and image processing aims at computatiatiffraction and kernel mean maps we are able
ally enhancing the quality of images by undoingp show that under certain imaging conditions
the adverse effects of image degradation suiomaging beyond the physical diffraction limit is
as noise and blur. It plays an important role im principle possible423.

both scienti ¢ imaging and everyday photogra- Removing camera shakephotographs taken
phy. Using probabilistic generative models of thgith long exposure times are affected by camera
imaging process, our research aims to recover &igake creating smoothly varying blur. Real hand-
most likely original image given a low-qualityheld camera movement involves both translation
image, or image sequence. In the following Wgnhd rotation, which can be modeled with our EFF
give a number of illustrative examples to highramework for space-variant blus97]. We were
light some of our work. also able to recover a sharp image from a single
Spatially varying blurs: our work on blind distorted image, using sparsity-inducing image
deconvolution of astronomical image sequencpgors and an alternating update algorithm. The
[620 can recover sharp images through atmalgorithm can be made more robust by restricting
spheric turbulence, but is limited to relativelyhe EFF to blurs consistent with physical camera
small patches of the sky, since the image defesftake p37]. This leads to higher image quality
is modeled as a space-invariant blur. Images tfi&ig. 1.8) and computational advantages. To fos-
cover larger areas require a convolutional moder and simplify comparisons between different
allowing for space-variant blur. Ir5f (] we pro- algorithms removing camera shake, we created
posed such a model based on a generalizatioragdublic benchmark dataset and a comparison of
the short-time Fourier transform, called Ef ciencurrent methods483.
Filter Flow (EFF), which is illustrated in FigL..6.
Deconvolution based on EFF successfully recov-
ers a sharp image from an image sequences dis-
torted by air turbulence (see Fig).7).

Super-resolution: we generalized our online
method for themulti-frame blind deconvolutionFigure 1.7: Our Ef cient Filter Flow model [ 570] com-
problem 52(] to account for the adverse eft_)ined with our online multi-frame blind deconvolution
. .6620] allows to restore a single sharp image given a
fect of saturation and to enable super-resolution

. ' Sequence of blurry images degraded by atmospheric
given a sequence of degraded imag&84. i, bulence.
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In astronomical imaging, dim celestial objects
require very long exposure times, which causes
high sensor noise. It is common to subtract a
dark frame from the image — an image taken
with covered lens, containing only sensor noise.
The dif culty with this is that the sensor noise
: is stochastic, and image information is not taken
fast removal of non-uniform camera shake [537]. The left . - .. .
image shows the original image blurred due to camera into account. We studied the distribution of sen-
shake during exposure, the right image shows the result  SOr noise generated by a speci c camera sen
of our proposed method. sor and proposed a parameterized mo&aH].
Correcting lens aberration: even good Combined with a simple image model for astro-
lenses exhibit optical aberration when used wittbmical images, this gives superior denoising.
wide apertures. Similar to camera shake, this creMulti-scale denoising: noise usually has a
ates a certain type of blur that can be modeleabre damaging effect on the higher spatial fre-
with our EFF framework; but optical aberrationguencies, so most algorithms focus on those.
affects each color channel differently (chromatidowever, if the noise variance is large, also
aberration). We measured these effects witHaver frequencies are distorted. We were able to
robotic setup and corrected them using a naigni cantly improve the performance of many
blind deconvolution based on the EFF frameiethods for that setting by de ning a multi-scale
work [535. We were also able to implemenmmeta-procedure, leading to a DAGM 2011 prize
a blind method rectifying optical aberration§539.
in single images477. An example is shown
in Fig. 1.9. The key was to constrain the EFF
framework to rotationally symmetric blurs vary-
ing smoothly from the image center to the edges.
We have recently been able to formulate this as
non-parametric kernel regression, enabling faith-
ful optical aberration estimation and correction
[32Q, which might lead to new approaches in
lens design. Figure 1.10: Schematic illustration of casting image
restoration as a learning problem. A neural network (mid-
dle) is trained with degraded/clean image pairs to learn

a mapping from a degraded image (left) to a restored
image with enhanced quality (right).

Figure 1.8: Example result of our proposed method for

Image restoration as a learning problem:

since denoising can be also seen as a non-trivial
Figure 1.9: To test the capability of our approach to mapping from noisy to clean images as sketched
optical aberration correction, we built a camera lens con-  IN Fig. 1.10 we were particularly interested
taining a single glass element only. An example image  whether a learning-based approach can be ap-
is shoy\m on the left, which exhibits st_rong blur artifacts plied. Using very large data sets, we trained
especially towards the corners of the image. In contrast, . .
the restored image (right) is of high quality and demon- a mu_ltl_lajyer perceptron (MLP) thaF IS_ able to
strates that our method [472] is able to correct for most denoise Images better than all existing meth-
degradations caused by optical aberrations from a single  0ds, leading to the new state-of-the-art denoising
input image only. method §50.

Denoising: another classical image distortion Such a discriminative approach turned out to
is noise Noise can exhibit different structurebe effective also for other image restoration tasks
e.g., additive white Gaussian, salt-and-peppsuch as inpainting402], non-blind deconvolu-
JPEG-artifacts, and stripe noise, depending tion [424], as well as blind image deconvolution
the application. [26, 320.

More information:https://ei.is.tuebingen.mpg.de/project/computational-imaging
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Figure 1.11: Retrospective, fully data-driven removal of motion-related artefacts in 2D RARE images. Left: motion
corrupted image. Middle: reconstruction. Right: no-motion image.

Modern medical imaging is a blend of 20tlin presence of MR image artifacts(q and the
century breakthroughs in physics and informassessment of PET quanti cation accuracy in a
tion processing. Although there is an ongoingediatric patient collective?g].
advancement of technology, many of the prob-Patient motion during long MR scans leads
lems remain unsolved. Using machine learning severe non-local degradations and can render
and image processing techniques for more efmages unacceptable for medical diagnosis. We
cient and intelligent use of acquired data seemeveloped a retrospective (post-processing) ap-
a promising solution to some of the obstaclgzoach called GradMC, which operates on the
For example, understanding the statistical prapetion-corrupted image®#§]. It automatically
erties of medical images allows making certaitorrects for motion artifacts by searching for a
prior assumptions on unobserved or corrupteabtion-generating function whose inverse ap-
aspects of the data, which makes it possible péication optimizes a quality measure based on
improve the image quality and aid the medic#thage statistics. Our GPU implementation pro-
diagnostics. cesses a full 3D volume in a few minutes, which

PET-MR systems combine functional informas acceptable in routine clinical use. In a follow-
tion from Positron Emission Tomography (PET)p work, we have come up with a fully retro-
with structural information from Magnetic Resospective non-rigid motion correction scheme that
nance (MR) Imaging. They demand PET attenonrly needs raw data as an inp&f.
ation (or ) map to be determined from MR data, Diffusion MRI (dMRI) allows us to investi-
which constitutes an ill-posed problem. We hawgate brain tissue microstructure non-invasively.
developed a Gaussian process prediction frarRecently, supervised classi cation has been used
work, trained on co-registered MR anémaps, to recognize patterns in this rich and complex
and evaluated it on brain and whole body data.data that allow us to automatically detect neuro-
collaborative effort with the university hospitallogical diseases. We have contributed to this eld
Tubingen, the method has been patented andli-developing improved methods for feature ex-
censed to Siemens AG. Further research focugeattion [345, by applying machine learning to
on evaluating the in uence of positioning aidspeci ¢ diseasesj6], and via a survey that sum-
[191], improving the robustness of the methorharizes the state of the art.

More information:https://ei.is.tuebingen.mpg.de/project/machine-learning-for-medical-and-neuroscienti c-
imaging
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Figure 1.12: From left to right: (1) deepest existing image of NGC 5907, showing a recently discovered faint stellar
stream (Martinez-Delgado et al., The Astronomical Journal., 689:184-193, 2008); (2-5) example images obtained
by a Web search for NGC 5907 (manually removing images that show the stellar stream); (6) result obtained by our
algorithm (tone-mapped to the histogram of the deep image).

Astronomy offers some of the most exciting Half-sibling regression for modeling sys-
opportunities for machine learning applicationgmatic errors
in the natural sciences. Satellite missions as wellThe Kepler space observatory, launched in
as ground-based observations have genera2€@9, observes a tiny fraction of the Milky Way
datasets of unprecedented quality and size. Newsearch for exoplanets, monitoring the bright-
sub elds of astronomy such as exoplanet scienoess of 150,000 stars. Some of them exhibit
have emerged, impossible without large scgberiodic descreases of brightness in their light
data analysis. However, by and large, data anadyrves due to partial occlusions caused by exo-
sis in astronomy is still rather conservative, arglanets. These measurements, however, are cor-
there are thus large opportunities for data-driveapted with systematic noise due to the telescope.
modeling and probabilistic inference. Our worklowever, since the stars can be assumed to be
in this eld bene ts from methods developedcausally independent of each other (they are light
within several projects in the department, angkars apart) as well as of the instrument noise, it
some of it is thus discussed elsewhere (see pages out that we can denoise the signal of a sin-
23where an astronomical image deconvolutiggle star by removing all information that can be
method [L84] is discussed). explained by the measurements of the other stars.

Combining hetergeneous imagingdhe Web Under the assumption that the systematic noise
contains millions of astronomical images thatcts in an additive manner, we provide strong
contain scienti cally valuable information aboutheoretical guarantees regarding the quality of
the night sky. However, these images are dif cuthe reconstruction349.
to use for scienti ¢ purposes because images renExoplanet search & characterization We
dered for human visual consumption are usuakypplied the half-sibling regression model to per-
processed with non-linear tone mappings. Vilerm the rst systematic search for transiting
developed a system that builds a high dynamexoplanet signals in new data from NASAs K2
range and wide-angle image of the night skylission. Using this method, we discovered 36
by combining a large set of such imag86]]. new planet candidates—of which 21 were subse-
It computes a “consensus” image whose pixgliently validated as bona de exoplanets (Mon-
brightnesgankinformation tries to agree withtet et al., Astrophysical Journal, 809, 25, 2015)—
the individual images. The complexity of theand demonstrated that these data could be used
algorithm is linear in the number of images. fior planet detection despite the large systematic
permits discovery of astronomical objects or fearrors B8]. We used principal component analy-
tures that are not visible in any of the input insis to reduce the dimensionality of the predictors
ages taken individually, as shown by a faint tidand extended the half-sibling methodology to
stellar stream (see Figure12. More impor- jointly t for the regression weights and the exo-
tantly, however, it permits scienti ¢ exploitationplanet properties. This increased the sensitivity
of a huge source of astronomical images that our search to small signals and allowed the
would not be available to astronomical researgmopagation of uncertainties in the systematics
without our automatic system The system wasodel to our estimates of the physical parame-
featured on the BBC Stargazing Live programters.

More information:https://ei.is.tuebingen.mpg.de/project/astronomy
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Figure 1.13: The robot learning lab aims at nding a general approach to acquiring motor skills. Developed
algorithms and methods are tested in skill learning tasks such as playing table tennis.

Creating autonomous robots that can learnétementary behaviors.
assist humans in daily life situations is a fasci- Mimicking how children learn new motor
nating challenge for machine learning. We focuasks, we have used imitation to initialize to
on the rst step of creating robots that can leafiearn libraries of elementary primitives, and sub-
to accomplish many different tasks triggered tsequently reinforcement learning to improve the
an environmental context or a higher-level iperformance. We have learned elementary tasks
struction and plan to obtain a general approashch as Ball-in-a-Cup or bouncing a ball7[g,
to motor skill learning. We focus on (1) domain23§ and gradually moved to more complex
appropriate machine learning approaches thatates. As the benchmark of complex behavior,
low for better control, imitation of behavior andve chose the task of returning table tennis balls
self-improvement, as well as (2) new robotiocsver the net. We created a parser that segments
approaches to create more appropriate systamsvements of a human teacher into elementary
for high-speed skill learning. movements$94, 596. These then train the sin-

Starting from theoretically sound robotic corgle elementary movement$18 238. Novel be-
trol structures for task representation and exetiaviors, modulated by the opponent's incoming
tion, we replace analytic modules with more exball, are composed by mixing motor primitives
ible learned onesAEg. To this end, we tackle [465 581]. With the help of this method, the
problems such as accurate but compliant exebot table tennis player learnt with this method
cution in joint-space483 or task-spacel5(, successfully returns of 97% of the balls played
learning of elementary behaviors using comlaigainst a ball gun. Current approaches are likely
nation of imitation and reinforcement learningp achieve even better resul&[/] and use accu-
[178 239, hierarchical composition of behavrate prediction of the human opponent's behavior
iors, and parsing complex demonstrations inbefore the opponent even touched the bé&ild.

More information:https://ei.is.tuebingen.mpg.de/project/robot-skill-learning
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Figure 1.14: Ball-in-a-cup was learned with the EM-like policy search approach called POWER [178].

Reinforcement learning ranks among thter actions as improper probabilities indicating
biggest challenges for machine learning. Juste actions' success. Their idea resembles Ex-
controlling a known dynamical system is hargectation Maximization, giving good actions a
on its own — interacting with an unknown systerhigher probability to be re-used. This framework
poses even harder decision problems, such asd&o uni es previous algorithms, and allows the
infamous exploration-exploitation tradeoff. Mostlerivation of novel ones, such as episodic reward-
research in this area is still con ned to theoretiveighted regression and POWER.

cal analysis and simplistic experiments, but the pe|ative Entropy Policy SearchPolicy im-
promise of autonomous machines justi es the.qvements in policy search often invalidate
effort. Over the past years, members of the Gfaviously collected information, causing pre-
partment contributed to reinforcement learning aiure convergence and implausible solutions.
in theory and experiment. These problems may be addressed by constrain-
Non-Parametric Dynamic Programming ing the information loss. Relative Entropy Pol-
[530 showed that a non-parametric kernel deicy Search (REPS) bounds the information loss
sity representation of system dynamics uni eshile maximizing expected returb86. REPS
several popular policy evaluation methods: thailiffers signi cantly from previous policy gradi-
Galerkin method joins Least-Squares Temporamt approaches. It yields an exact update shown
Difference learning, Kernelized Temporal Difto work well on reinforcement learning bench-
ference learning, and a type of discrete-state Dyarks. REPS can be generalized hierarchically
namic Programming, as well as a novel meth¢d55 using a gating network to choose among
of improved performance. several option policies. This hierarchical REPS
EM-like Reinforcement Learning Policy €arns versatile solutions while increasing learn-

search, a successful approach to reinforcem&#t Speed and the quality of the learnt policy.
learning, directly maximizes the expected return Bayesian reinforcement learningProbabil-

of a policy — in contrast to value function apity theory gives a uniquely coherent answer to
proximation, which derives policies from a learnthe exploration-exploitation dilemma: From the
value function. However, few of its variants scalBayesian perspective, reinforcement learning is
to many dimensions, as they are based on grheut including possible future observations in
dient descent over many trials. To improve efonsiderations about optimal behavior. Since
ciency, [178 reduced the problem to rewardprobabilistic models can predict future data, this
weighted imitation, treating rewards received gfocess can be rigorously formalized. It amounts
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to modeling knowledge as an additional dynamigavior, then use it to learn in the new system.
variable to be controlled. In general, the combithis avoids exhaustive exploration by searching
natorial number of possible futures is intractablégr policies close to the expert's. Previous work
however, p4( showed that the Gaussian procesequired a model of the expert's dynamics, but
(GP) framework, in which predictions involvg508 presented a model-free inverse reinforce-
linear algebra calculations, allows approximatient learning algorithm, using importance sam-
ing optimal exploration-exploitation with classigling to adapt expert examples to the learner's
numerical methods for the solution of stochastilynamics. Tested on several benchmarks, the al-
differential equations. gorithm proved more ef cient than the state of
Reinforcement learning with Gaussian the art. Generalization in both forward and in-
Processesf279 used GPs for approximate dyverse reinforcement learning depends on the pro-
namic programming in reinforcement learninggction of states onto features to describe reward
as probabilistic function approximators for thand value function. Features, especially visual
value function, and as models of the systeanes, are often subject to noise, for example in
dynamics. Using the predictive uncertainty faiobot grasping and manipulation tasks. To solve
guidance, active learning methods could explotiis problem, 63 combined control and struc-
the state space ef ciently5p5 proposed a par-tured output prediction over Markov Random
ticularly ef cient use of GPs for optimal controlFields to represent the action distribution. Their
over continuous states for non-bifurcating systethod is robust to noise in a grasping task, and
tems with low sampling rate. In their work, GPgan also be used in other applications requiring
capture information gained, as well as remainirgpntrol from vision.
uncertainty due to noise and lack of experience Data-dependent Analysis of Reinforce-
The system's behavior is predicted by propagatent Learning Many analyses of reinforce-
ing state and action distributions through timement learning focus on worst-case scenarios,
tractability is achieved approximating distribualthough reality is often not adversariab.3g]
tions by moment matched Gaussians. This “viised PAC-Bayesian inequalities for martingales
tual simulation” is used to optimize the contrah a data-dependent analysis of the exploration-
policy. Their algorithms learn from even limexploitation trade-off {38. We studied stochas-
ited interactions with the environment due to thisc multi-armed bandits with side information
power of using probabilistic forward models foalso known as contextual bandits), a general
such indirect experience rehearsal. framework where at each round of the game the
Apprenticeship learning via inverse rein- agent is presented with side information (e.g.,
forcement learning Unguided exploration cansymptoms of a patient in a medical application)
be hazardous for systems like robots. This issaad has to nd the best action (e.g., the best drug
is addressed by imitation learning from exann prescribe given the symptoms). This model
ple actions provided by an expert, where the atlass is also used for personalized advertising
tonomous agent learns a policy generalizing tlo@ the internet. Our analysis includes the ac-
demonstrations to new states. This behaviotahl usage of side information by the algorithm,
cloning may fail when the dynamics of expentather than the total amount of side information
and learner differ. Indeed, even simple repepirovided. This allows offering a lot of side infor-
tion of the expert's actions does not always yielchation and letting the algorithm decide what is
the same results. An alternative is to infer threlevant, improving the run time of the algorithm
expert's reward function from the expert's beexponentially over the state of the art.

More information:https://ei.is.tuebingen.mpg.de/project/reinforcement-learning
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Brain-computer interfaces (BCIs) translatgon [14, 46]. This is essential to understand how
neural recordings into signals that may be us#te diseased brain differs from the one of healthy
for communication and/or the control of newsubjects, which has implications for the design
roprosthetic devices. Research in this domadh BCI systems for patient populations.
poses interesting challenges to machine learnBrain-computer interfaces for communica-
ing, because data is typically scarce, noisy, atidn Building upon our machine-learning meth-
non-stationary18€. Furthermore, good decodeds, we have investigated the neural basis of the
ing algorithms are contingent on domain knowdbility to operate a BCI in healthy subjects and
edge that is not readily available and dif culin patient populations. We were able to show
to incorporate into traditional statistical mettthat the con guration of large-scale cortical net-
ods. Accordingly, we employ machine-learningorks, as represented in high-frequency gamma-
methods to study neural processes involvedascillations of the brain's electromagnetic eld,
BCl-control and use these insights to develap uences a subject's ability to communicate
novel decoding algorithms and enhance expewith a BCI [149, 174]. Building upon these in-
mental paradigms. sights, we have developed a novel class of BCls

Machine learning algorithms for brain- for patients in late stages of amyotrophic lateral
state decodingA crucial aspect of our work sclerosis §1, 344|.
is the development of algorithms for real-time Brain-computer interfaces for rehabilita-
brain-state decoding. We have developed a grapbn While BCls were initially conceived as
ical model decoding framework for ERP-basezcbmmunication devices for the severely disabled,
visual speller systemsl87]. Furthermore, we we have argued that they can also be used for
were the rst to successfully apply the framestroke rehabilitation]83. By combining a BCI
work of multi-task learning to the domain ofwith a seven degrees-of-freedom robotic arm,
BCls [560. As the signal characteristics usederving an exoskeleton, we developed a brain-
by subjects to control a BCI share common antrolled rehabilitation robot supporting pa-
pects, the incorporation of data from previoushjents with chronic stroke in self-regulation of
recorded subjects substantially decreases csdinsorimotor brain rhythm494]. The concept
bration time and enhances overall decoding pef-brain-controlled rehabilitation robotics can be
formance [L3]. Besides working on methods foextended to systems that monitor patients' learn-
real-time decoding, we also develop tools to img progress to adapt the rehabilitation exercise
vestigate the neural basis of disorders of cogmi-real-time p5)].

More information:https://ei.is.tuebingen.mpg.de/project/brain-computer-interfaces
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Figure 1.15: Left: example of LFP signal (blue) and concurrent fMRI activity (black), repetitive dynamical patterns
appear in red blocks. Right: learned dictionary of dynamical patterns, together with their brain-wide signature.

Mammalian brains ef ciently combine pervisual cortex B4]. We also study novel causal-
ception, decision making, and motor commandy principles proposed by our department as an
in hundreds of milliseconds. Machine learninglternative to the Granger causality framework
can help understand these fascinating distribute@tely used in neuroscience. In particular, we
information processing capabilities. developed a new causal inference method for

A rst application of machine learning algotime series based on the postulate of Indepen-
rithms to neuroscience is the extraction of infodence of Cause and Mechanism. We provided
mation from complex brain signals, focusing otheoretical guaranties for this approach, which
their dynamical aspects. This includes the desigatperformed Granger causality in experimental
of non-parametric statistical dependency mda-P signals 353.
sures for time series using an implicit mapping Causal inference techniques can also be used
in a Reproducing Kernel Hilbert Space to cape assess which aspect of brain activity affects
ture complex non-linear dependencies betwete behavioral outcome of an experiment. Causal
brain rhythms 441], as well as dictionary learnterminology is often introduced in the interpreta-
ing techniques that automatically identify th&on of neuroimaging data without considering
transient dynamical patterns in ongoing Loc#he empirical support for such statements. We in-
Field Potentials (LFP) of a given brain structureestigated which causal statements are warranted
that have an impact on the activity of the wholand which ones are not supported by empirical
brain (see Figuré.15 [160. evidence 46]. Our work provides the rst com-

A second objective is to infer causal statprehensive set of causal interpretation rules for
ments about the organization of underlying nemeuroimaging results.
ral mechanisms. One key application is the esti-Beyond providing powerful data analysis tech-
mation of the direction and strength of informariques, machine learning can help understand
tion ow across brain networks. We rst studiedbrain function from a theoretical perspective. We
the communication between multiple locationavestigated a standard model of neuronal adapta-
of the visual cortex using an information thdion — spike-timing dependent plasticity — in this
oretic measure of Granger causality, Transfeay and showed it can be viewed as a stochastic
Entropy, computed between LFP signals durirgyadient descent of a neuromodulatory reward
visual stimulation £24]. Our results suggest thefunction implementing a form of empirical risk
presence of waves propagating along the corticalnimization P5, 473. These results help under-
tissue along the direction of maximal ow of instand optimality properties of biological learn-
formation, routing visual information across thang.

More information:https://ei.is.tuebingen.mpg.de/project/machine-learning-and-neuroscience
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Figure 1.16: Visualization of the machine learning approach to uncover critical features. Consider the problem of
predicting for an image patch whether it is likely to be a saccade target or not. Panel (a) depicts image patches
that have (yellow) or have not (red) been saccade targets. The yellow-to-red gradient represent the response of
a SVM with a Gaussian kernel trained on the patches. Panel (b): Gradient descent on the function that the SVM
implements, extrema are indicated. Panel (c): Using the extrema, a network with four kernels centered on them

approximates the SVM. (Adapted from [289].)

This project investigates human perceptiogingle set of parameters(g.
combining psychophysical experiments and com-Third, the project seeks to understand the fun-
putational modeling. Currently we have foudamental questions of characterizing the compu-
main research foci: tational principles underlying lightness percep-

First, we develop methods to gain more ition, treating lightness perception as one exam-
formation from psychophysical data. We chgple of how to rigorously study the visual mech-
acterized serial dependencies in behavioral aisms translating ambiguous retinal input into
sponses, and introduced methods to correct fmrceptually and psychologically relevant cate-
them [B3]. We wrote a software package to pegories 2, 23, 117.
form Bayesian inference for the psychometric Finally, we are moving towards understand-
function for non-stationary data. In addition, wéng perceptual causality. Recently there has been
introduced the use of spatial point processesdonsiderable progress in understanding causal
characterize eye-movement xation patterds,[ inference by viewing it as a machine learning
99]. Finally, we continue to improve machingroblem. This is relevant to perception since an-
learning methods to uncover the critical featurésals cannot operate based on the assumption
observers use in complex perceptual taskisB] of independent and identically distributed (iid)
149) (c.f. [289 and Figurel.16). data but need to employ suitable inference meth-

Our second focus is the development of ads that work under changing distributions in
image-based model of spatial vision. We interder to produce robust perception. We study
grated the large psychophysical literature on sicausal models of perception in a simple binary
ple detection and discrimination experiments amthssi cation setting where the perceiver needs
proposed a model based on maximume-likelihodd distinguish cause and effect, or forward and
decoding of a population of model neurons preackward, a task we recently studied in a com-
dicting several data sets simultaneously, usingater vision contextj63

More informationhttps://ei.is.tuebingen.mpg.de/project/psychophysics-and-computational-models- of-behaviour

Max Planck Institute for Intelligent Systems, Stuttgart Tibingen | Research and Status Report 2010 — 2015 | Part |



1 Empirical Inference

le servers, used for shared data as well as
personal home directories. Backups are done
through a tape library system, as well as a disk
based snapshotting system for the most impor-
tant data. Off-site storage from RZ Garching is
offered for long-term archival of scienti ¢ data.

For numerical experiments the group has ac-
cess to a high performance computing cluster,
shared by the departments of the MPI for Intel-
ligent Systems. The cluster nodes and their sup-
porting infrastructure are maintained by a cen-
tral scienti ¢ facility. The Empirical Inference
department is using a 45% share of the central

Figure 1.17: Some of the nodes of the computer cluster.  ¢|yster as of now. The cluster comprises 32 rack-

The desktop computing environment of thenounted multi-processor nodes based on the
Department of Empirical Inference is based o86_64 architecture, running Ubuntu Linux. The
Intel PCs, and currently uses the centrally mamaedes are connected vid GBit/s ber-optic
aged operating systems Ubuntu Linux, Microsofbnnections. In total, the system consists of 1536
Windows, and Mac OS X. Silent PCs with nontel and AMD 64-bit CPU cores with 18.5 ter-
moving parts are used to provide the best posabytes of memory, as well as 74 modern nVidia
ble work environment. GPUs and 100 terabytes of fast distributed stor-

For data storage the department currently afye space. The most powerful machines have 64
fers 80TB of online le system storage on twaCPU cores and 1 terabyte of memory.

learning simple skills (e.g., ball-in-a-cup or pad-
dling balls), and larger composite tasks such as
table tennis. These goals require a unique and
maintenance-intensive set-up.

For fast as well as compliant control, we have
a unigue, custom-made high-voltage version of a
Barrett WAM robot arm speci cally designed for
high-speed control while having seven degrees
of freedom. Torque-level access to the robot,
back drivability, and little backlash enables the
use of this platform for learning control experi-
ments and as a haptic input device during imita-
tion learning or robot task assistance. The robot
control makes use of a four camera high-speed

The Robot Learning Lab of the Empirica(zoo H2 visio_n setup developed fo_rthat_purpose.
Inference Department focuses on nding task Software is based on a real-time Linux op-
appropriate machine learning methods for acqUfting system and on the robot programming
ing and re ning motor skills. Current objectivedramework SL.
include learning high-speed compliant control, A tendon-driven pneumatic arti cial muscle

Figure 1.18: The Barrett WAM robot arm.
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robot arm is being developed in order to study ambling safer applications of learning control ap-
tagonistically actuated joints, allowing for lightproaches whilst extending the variety of possible
weight segments, incorporating strong musclésjectories. We aim to use this new robot to show
and using co-contraction for compliant contrahat learning can be particularly bene cial when
We aim at approaching performance as observgdssical methods fail.

in humans by designing such a system and en-

desirable, high temporal and spatial resolution,
and where EOG and EMG signals are also re-
quired for artifact control. As of 2011, we also
have a 128-channel active electrode system man-
ufactured by BrainProducts GmbH, substantially
reducing the preparation time of experimental
studies and providing better signal-to-noise ra-
Figure 1.19: The BCI lab of the empirical inference de- tios outside of well-controlled laboratory envi-
partment. ronments (Figuré..19, right). We have further
acquired the Armeo Power, a robotic exoskele-
The QuickAmp 136 (Figure..19 left) is a ton manufactured by Hocoma AG in Volketswil,
high input-impedance ampli er capable of meawitzerland. This exoskeleton enables us to both
suring and recording up to 128 channels of elestpport and perturb movements of the upper ex-
troencephalographic (EEG) data, as well as effemities during motor learning, which enables
(EOG), muscle (EMG), and other physiologicals to study the neural basis of motor learning
signals. It is used for Brain-Computer Interfac healthy subjects and patient populations with
research, where brain signals with low noise aneovement disorders.

eral SLR and CCD cameras (including cooled
and uncooled Canon 5D Mk. Il, Canon 5DS R,
Sony A7R MKk. Il, Finger Lakes Instruments ML-
16803) with various lenses. For quality assess-
ment and quantitative comparisons we use an
image quality analysis system (iQ Analyer by
Image Engineering). To generate images and im-
age sequences with controlled camera shake, we
also use a Stewart platform (hexapod robot, see
Figure1.20 that allows a high accuracy for re-
peated movements.
In addition to usual photographic lenses we
Figure 1.20: Hexapod robot with camera mounted to  also make use of telescopes (including a Meade
create repeatable camera shakes. 12" Schmidt-Cassegrain) that allow us to work
In computational imaging it is only of limitedon real-world astronomical image sequences
value to work on simulated images. Instead affected by turbulence. Furthermore we em-
is important to develop deblurring and denoiploy a setup with two telescopic mounts (ASA
ing algorithms that work on real data. To b®BDM60PRO, Vixen Sphinx) to study and de-
able to take such photographs for varying seelop reinforcement learning algorithms to im-
tups and with controlled distortions, we use seprove their tracking precision.
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Shai Ben-David an®Ruth Urner Best Paper Award at NIPS 2015 Workshop on "Transfer and
Multitask Learning: Trends and New Perspectives".

Jakob Zscheischler: Képpen Award for his excellent doctoral dissertation (in climate and Earth
system research) done at the MPI for Intelligent Systems and the MPI for Biogeochemistry
in Jena.

Vinay Jayaram: Second prize in the "T3 Award" - Thesis in 3 - category PhD students. Title of
the presentation: "Why can't we control computers with our minds yet?"

Leonardo Casarsa:Second prize in the "T3 Award" - Thesis in 3 - category Master students.
Title of the presentation: "Can computers treat sick brains?"

Matej Balog: Winner of Code Hunt programming contest at Microsoft Research PhD Summer
School 2015

Jakob Zscheischler:Otto-Hahn-Medal for his PhD Thesis "A global analysis of extreme events
and consequences for the terrestrial carbon cycle", performed at the MPI for Intelligent
Systems, Tubingen and the MPI for Biogeochemistry, Jena.

Katharina Muelling: Award for Extraordinary Scienti ¢ Achievement for her Ph.D. thesis by
the "Freunde der TU Darmstadt".

Oliver Kroemer: Runner Up for the 2015 Georges Giralt Award (Best European Robotics Ph.D.
Thesis Award)

Jan Peters: ERC Starting Grant (2015-2020) for Research on Movements of Humanoid Robotics

Philipp Hennig: Emmy-Noether-Program "Probabilistic Numerics - Probabilistic Programming
for Autonomous Systems"

Carl-Johann Simon-Gabriel: Google European Doctorate Fellowship 2014-2016.

M. Deisenroth (TU Darmstadt), P. Englert (Uni Stuttgadt)Peters D. Fox (U. Washington):
IROS Best Cognitive Robotics Paper Award.

O. Kroemer (TU Darmstadt), H. van Hoof (TU Darmstadt), G. Neumann (TU Darmsthdt),
Peters: IROS Best Cognitive Robotics Paper Award Finalist

A. Abdolmaleki (Universidade de Aveiro), N. Lau (Universidade de Aveiro), G. Neumann (TU
Darmstadt),). Peters: 1st Place at the 3D Free Challenge of the RoboCup 2014.

Sebastian Weichwald Timm Meyer, Bernhard Scholkopf, Tonio Ball, and Moritz Grosse-
Wentrup: best student paper award at the 4th International Workshop on Cognitive Informa-
tion Processing (CIP 2014) for: "Decoding Index Finger Position From EEG Using Random
Forests".

Moritz Grosse-Wentrup and Daniel Braun: Teaching Award Winter & Summer Term 2013/14
at Graduate School of Neural Information Processing, University of Tlbingen

Bernhard Scholkopf: Royal Society Milner Award 2014
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Manuel Gomez-Rodriguez outstanding paper award at NIPS 2013 for the paper: "Scalable
In uence Estimation in Continuous-Time Diffusion Networks"

Jan Peters Young Investigator Award of the International Neural Networks Society (INNS) in
2013.

Jan Peters Early Career Award of the IEEE Robotics and Automation Society in 2013.

Jens Kober. Georges Giralt Award as the Best European Robotics PhD Thesis for his PhD Thesis
"Learning Motor Skills: From Algorithms to Robot Experiments”.

Jonas PetersETH Silver Medal for his PhD thesis "Restricted Structural Equation Models for
Causal Inference".

Thomas Schultz MRM Distinguished Reviewer Award.

Ulrike von Luxburg : Heisenberg Professorship

Jan Peters Early Career Spotlight of the conference Robotics: Science & Systems (R:SS) in
2012.

Jan Peters Frontiers of Arti cial Intelligence speaker at European Conference on Arti cial
Intelligence (ECAI) in 2012.

Christian Daniel, Gerhard Neumann, alah Peters IROS CoTeSys Cognitive Robotics Best
Paper Award, IROS 2012 Best Student Paper Award Finalist, and IROS 2012 Best Paper
Award Finalist for "Learning Concurrent Motor Skills in Versatile Solution Spaces" at the
International Conference on Intelligent Robot Systems (IROS)

Stefan Harmeling: Glnter Petzow Prize of the Max-Planck-Institute for Intelligent Systems

Bernhard Schdélkopf: Academy Prize 2012 of the Berlin-Brandenburg Academy of Sciences and
Humanities

Moritz Grosse-Wentrup andBernhard Schélkopf: Annual BCI Research Award 2011 for the
project "What are the neurophysiological causes of performance variations in brain-computer
interfacing?"

Thorsten Zander: Willumeit award for his Ph.D. thesis entitled "Utilizing Brain-Computer
Interfaces for Human-Machine Systems".

Harold Christopher Burger , andStefan Harmeling: DAGM 2011 Prize for "Improving De-
noising Algorithms via a Multi-Scale Meta-Procedure".

Suvrit Sra: Best Paper Runner up Award in Data Mining at The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
2011 for "Fast Projections onto L1,g-Norm Balls for Grouped Feature Selection".

Jan Peters Dick Volz Award Best 2007 US Ph.D. Thesis Runner-Up Award.

Suvrit Sra: SIAM Outstanding Paper Prizes for his paper "The Metric Nearness Problem," which
appeared in the SIAM Journal on Matrix Analysis and Applications (SIMAX).
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Gustavo Camps-Valls Joris Mooij, andBernhard Scholkopf: were selected for the 'IEEE
Geoscience and Remote Sensing Society 2011 Letters' Prize Paper Award for "Remote
Sensing Feature Selection by Kernel Dependence estimation".

Bernhard Schdélkopf: Annual Max Planck Research Award (shared with Sebastian Thrun, Stan-
ford)

Manuel Gomez Rodriguez Jure Leskovec, and Andreas Krause: Best Paper Award Honorable
Mention at the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD'2010) for the paper: "Inferring Networks of Diffusion and In uence."

Joris Mooij : Winner of two categories of the 2010 UAI Approximate Inference Challenge, 26th
Conference on Uncertainty in Arti cial Intelligence

Bernhard Schdlkopf: Inclusion in the list of 'ISI Highly Cited Researchers'

Hirotaka HachiyaJan Peters Mashashi Sugiyama: Young Researchers Award from IEEE Com-
putational Intelligence Society of the Japan Chapter for their paper "Adaptive Importance
Sampling with Automatic Model Selection in Reward Weighted Regression" presented at the
Workshop of IEEE CIS Technical Committee on Neurocomputing (March 9-11, 2010).

Carl Edward Rasmussenand Chris Williams: 2009 DeGroot Prize for textbooks or monographs
concerned with fundamental issues of statistical inference, decision theory and/or statistical
applications, and chosen based on their novelty, thoroughness, timeliness, and importance of
their intellectual scope: Gaussian Processes for Machine Learning, MIT Press 2006.

Oliver Kroemer, Renaud DetryJustus Piater, Jan Peters Best Paper Award of the 7th Inter-
national Conference on Informatics in Control, Automation and Robotics (ICINCO) for:
"Grasping with Vision Descriptors and Motor Primitives".

Povilas Daniusis Dominik Janzing, Joris Mooij, Jakob Zscheischler Bastian Steude) Kun
Zhang,Bernhard Scholkof: Best student paper award for: "Inferring Deterministic Causal
Relations", 26th Conference on Uncertainty in Arti cial Intelligence (UAI)

Jan Peters Jun Morimoto, Nick Roy, Jun Nakanishi: Most Active Technical Committee Award
of the IEEE Robotics and Automation Society at ICRA 2010

José M. Leiva Suzanne M.M. Martens winning team of the Machine Learning for Signal
Processing (MLSP) 2010 Competition: Mind Reading

Reshad HosseiniMatthias Bethge prize winning method for the highest performance in the
main challenge of GREAT08 PASCAL competition (Gravitational Lensing and Accuracy
Testing 2008)

Bharath Sriperumbudur , Kenji Fukumizu , Arthur Gretton , Gert LanckrietBernhard Scholkopf:
Honorable Mention, Outstanding student paper award for "Kernel Choice and Classi ability
for RKHS Embeddings of Probability Distributions" at Twenty-Third Annual Conference on
Neural Information Processing Systems (NIPS)

Nino Shervashidze Karsten Borgwardt: Fast Subtree Kernels on Graphs, Outstanding student
paper award, Twenty-Third Annual Conference on Neural Information Processing Systems
(NIPS)
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Christian Walder, Martin Breidt, Heinrich Bulthoff,Bernhard Schdélkopf, Cristobal Curio:
Markerless 3D Face Tracking, Runner up prize of the conference of the German Association
for Pattern Recognition (DAGM)

Michael Hirsch, Stefan Harmeling, Bernhard Schélkopf: top score in 'low noise' GREAT08
PASCAL competition (Gravitational Lensing and Accuracy Testing 2008)

Stefan Harmeling, Michael Hirsch, Suvrit Sra, Bernhard Schélkopf: Best Poster Award for
"Online Blind Deconvolution with Super-Resolution & Saturation Correction”, at the 1st
International Conference on Cosmology and Statistics (CosmoStats09)

Matthias Hofmann, Florian Steinke, Verena ScheelGuillaume Charpiat, Jason Farquhar,
Philip Aschoff, Michael BradyBernhard Scholkopf and Bernd J. Pichler: MRI-Based
Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition
and Atlas Registration, Best Paper Awards 2008 of The Journal of Nuclear Medicine
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Bernhard Schélkopf studied Physics, Mathematics and Philosophy in Tubingen and London. In
1994 he joined Bell Labs to work on a Ph.D. with Vladimir Vapnik. Following researcher positions
at GMD, Microsoft Research, and a biotech startup, Scholkopf started his lab at the Max Planck
Institute for Biological Cybernetics (Tubingen) in 2002. In 2011, he became a founding director of
the Max Planck Institute for Intelligent Systems.

Bernhard Scholkopf has been program chair of NIPS and COLT and is currently co-editor-in-
chief of the agship journal in machine learning (JMLR). He has been elected to the boards of the
NIPS foundation and of the International Machine Learning Society. With Alex Smola, he initiated
the Machine Learning Summer Schoskries in 2002, which has meanwhile been organized, by
various teams, 30 times. Many of his past students and postdocs have gone into academia (around
30 tenured or tenure-track positions) as well as to R&D labs (around 25 tenured), and he is one of
the most highly cited researchers in Computer Science worldivide.

2015 — present Co-Director of the Max Planck ETH Center for Learning Systems

2015 - present Member of the Max Planck Campus Triumvirat, Tubingen

2011 -2013 Managing Director, MPI for Intelligent Systems, Stuttgart & Tubingen

2011 — present Director, Max Planck Institute for Intelligent Systems

2012 — present Guest Professor, ETH Zirich, Computer Science Department

2010 — present Honorarprofessor, Tiibingen University, Department of Mathematics and Physics
2002 — present Honorarprofessor, Technical University Berlin, Department of Computer Science
2015 Overseas Visiting Scholarship, St. John's College, Cambridge, UK

2014 Royal Society Milner Award, London, UK

2013 XXVIlIth Courant Lectures, New York University

2012 Academy Prize, Berlin-Brandenburg Academy of Sciences and Humanities

4http://web.cs.ucla.edu/~palsberg/h-number.html|
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2011 Posner keynote lecturer at the NIPS Conference, Granada, Spain

2011 Max Planck Research Award, Max Planck Society

2011 Annual Brain Computer Interfaces Research Award (with Moritz
Grosse-Wentrup)

2010 Inclusion in the list of ISI Highly Cited Researchers

SIMTECH (Excellence Cluster for Simulation Technology, Stuttgart University); Center for Integra-
tive Neuroscience (Excellence Cluster, Tubingen University ); Bernstein Focus for Neurotechnology
(Freiburg/Tubingen); Bernstein Center for Computational Neuroscience (BCCN, Tubingen); German As-
sociation for Pattern Recognition (DAGM); Deutsche Mathematiker Vereinigung (DMV); Association for
Computing Machinery (ACM); Institute of Electrical and Electronics Engineers (IEEE, Senior Member);
European Academy of Sciences and Arts.

Co-founder of DALI — Data, Learning, and Inference (2015 —); Core Committee Member, MPI for Biological
Cybernetics (2015 —); The Future of Al — A New York University Symposium on Science, Technology, Rea-
son and Ethics (2016); ACM Heidelberg Laureate Forum Committee (2014-), Section Panel for Mathematics
in Science and Technology, International Congress of Mathematicians (ICM) 2014; General Chair of the
International Conference on Arti cial Intelligence and Statistics (AISTATS) 2012; Initial Training Network
for Machine Learning for Personalized Medicine (MLPM); PASCAL/PASCAL2 EU Network of Excellence;
Forum Scientiarum at the University of Tubingen; Snowbird Learning workshop; Machine Learning Summer
Schools (MLSS); International Machine Learning Society (IMLS); Neural Information Processing Systems
Foundation (NIPS).

Member of the pool of experts in the process to establish the Alan Turing Institute; Centre for Doctoral
Training (CDT) in Data Science, Edinburgh, UK; Italian Institute of Technology (IIT); Computer Science
Department, Ecole Normale Supérieure, Paris; Neural Computation and Adaptive Perception Program of the
Canadian Institute of Advanced Research (Chair); Gatsby Computational Neuroscience Unit, Quinquennial
Review 2010; Machine Learning Program, NICTA (Sydney).

Journal of Machine Learning Research (JMLR, Co-editor-in-chief); International Journal of Computer Vision
(2004 — 2010); Foundations and Trends in Machine Learning (since 2007); SIAM Journal on Imaging
Sciences (2007 — 2012); Serid€M BooksAssociation for Computing Machinery.

IFAC SYSID, Beijing (2015); Drawing Causal Inference from Big Data, National Academy of Sciences,
Washington, D.C. (2015); International Symposium on Statistical Learning and Data Sciences, London
(2015); Annual Oxford-Warwick Lectures in Statistics, Oxford (2015); Microsoft Distinguished Research
Lecture, Cambridge (2015); Babbage Seminar, University of Cambridge (2015); Annual Meeting of the
Max Planck Earth System Research Partnership, Weimar (2014); Symposium on Hyperspectral Imaging
in Research and Engineering, Shef eld (2014); Regularization, Optimization and Kernels, Leuven (2013);
Helmholtz Lecture, Humboldt-Universitat Berlin (2012); International Conference on Data Mining, Brussels
(2012); Maximum Entropy Conference, Munich (2012); Pattern Recognition in Neuroimaging, London
(2012); Information Hiding Conference, Prague (2011); 4th Pao-Lu Hsu Lecture, Joint Statistics Lab of
Microsoft Research Asia and Peking University (2010); IPMU, Dortmund (2010); SANUM, Stellenbosch
(2010); Techkriti, IIT Kanpur (2010); Methods for Mining Massive Data, Copenhagen (2009).
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