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Spemannstr. 38, 72076 Tübingen, Germany; 2,3 Centre for Integrative Neuroscience and

MEG Center, Eberhard-Karls Universität Tübingen, Otfried-Müller-Str. 47, 72076
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Abstract

We consider the task of inferring causal relations in brain imaging data with

latent confounders. Using a priori knowledge that randomized experimental

conditions can not be effects of brain activity, we derive statistical conditions

that are sufficient for establishing a causal relation between two neural processes,

even in the presence of latent confounders. We provide an algorithm to test these

conditions on empirical data, and illustrate its performance on simulated as well

as on experimentally recorded EEG data.

1. Introduction

Inferring the causal structure of a cortical network is a central goal in neu-

roimaging [1]. Various methods have been developed to infer causal relations

from brain imaging data, including structural equation modeling (SEM) [2, 3],

Granger causality (GC) [4, 5, 6], dynamic causal modeling (DCM) [7, 8], and5
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causal Bayesian networks (CBNs) [9, 10, 11, 12, 13]. These methods commonly

assume causal sufficiency ; that is, they presume that all causally relevant vari-

ables have been observed. This assumption is often implausible, because various

factors can confound a causal analysis. These factors include, but are not lim-

ited to, unmeasured brain regions in an fMRI analysis [2, 8, 14], cardio-ballistic10

artifacts in ECoG recordings [15], and volume conduction of cortical and non-

cortical current sources in EEG or MEG data [16, 17]. Because it is not trivial

to anticipate potential confounders, results obtained with methods based on

causal sufficiency must be interpreted with caution.

Latent confounders can be addressed by the IC* [18] and FCI algorithms15

[19, 20], which use the theory of ancestral graphs. Theoretically, both algorithms

can distinguish genuine causal relations from spurious relations induced by la-

tent confounders. In practice, the involved statistical tests are complex, which

currently limits their application in neuroimaging to variables that are jointly

Gaussian distributed [21]. The assumption of jointly Gaussian distributed vari-20

ables has been criticized as unreasonable for neuroimaging data [22, 23, 12].

We contribute to research on causal inference with latent confounders in

two ways. First, we show that the statistical tests required to identify a genuine

causal relation can be simplified when the experimental condition is random-

ized. Using the a priori knowledge that a randomized experimental condition25

cannot be caused by neural processes, we analytically prove that if two neural

processes are modulated by an experimental condition, a single test of condi-

tional independence is sufficient to establish a genuine causal relation between

those processes. To emphasize the requirement that, in our approach, the ex-

perimental conditions must be randomized, we later refer to them as the stimuli30

presented to a subject. Second, by using linear regression, we reduce the re-

quired conditional independence test to a marginal independence test. This test

is advantageous because asymptotically consistent statistical tests are readily

available for marginal independence [24, 25, 26], but not for conditional inde-

pendence [27, 28]. We prove that this linearized conditional independence test35

is sufficient but not necessary for conditional independence: while our test may
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fail to detect conditional independence if the assumption of linearity is not met,

a positive test result implies that this assumption has been fulfilled. Taken

together, our two contributions lead to a non-parametric version of the instru-

mental variable approach to causal inference [29, 18]. The resulting algorithm,40

which we term stimulus-based causal inference (SCI), can provide empirical ev-

idence for a causal relation between two neural processes, even in the presence

of latent confounders.

We demonstrate the performance of the SCI algorithm on simulated as well

as on experimentally recorded EEG data. We first use a neural mass model for45

spectral responses in electrophysiology [30] to provide estimates of the power

and of the false discovery rate (FDR) of the SCI algorithm for a variety of

causal models. We then show how our method can be used to infer group-level

causal relations on EEG data, which we recorded for a study on brain-computer

interfacing (BCI) [31]. In this study, subjects were trained via neurofeedback50

to self-regulate the amplitude of γ-oscillations (55–85 Hz) in the right superior

parietal cortex (SPC), a primary node of the central executive network (CEN)

[32]. Because transcranial magnetic stimulation (TMS) of the CEN has been

found to modulate the medial prefrontal cortex (MPC) [33], we hypothesized

that self-regulation of γ-power in the right SPC causes variations in γ-power55

in the MPC. Consistent with this hypothesis, the SCI algorithm determined

the MPC to be modulated by the right SPC. We conclude the article with a

discussion of the utility and of the limitations of causal inference to study the

structure and the function of cortical networks.

We note that the SCI algorithm is applicable not only to EEG recordings60

but also to any neuroimaging data set that is based on randomized experimental

conditions. We have condensed the SCI algorithm into one line of Matlab code,

which is available at http://brain-computer-interfaces.net.
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2. Methods

We begin this section by introducing the framework of causal Bayesian net-65

works (CBNs), which our work is based on (cf. [9, 10, 11, 12, 13] for applications

of this framework in neuroimaging). We then present the sufficient conditions to

establish causal influence of one cortical process on another in stimulus-based

experiments (subsection 2.2). In subsection 2.3, we use linear regression to

reduce the required conditional independence test to a marginal independence70

test. We discuss how to apply the resulting causal inference procedure to empir-

ical data in subsection 2.4. We conclude the methods section with a discussion

of the relation of the SCI algorithm to instrumental variables in subsection 2.5.

2.1. Causal Bayesian networks

In the framework of CBNs, a random variable x is a cause of another random75

variable y if setting x to different values by an external intervention changes the

probability distribution over y [18, 19]. In the notation of the do-calculus, this is

expressed as p(y|do(x)) 6= p(y) for some values of x and y. Thus, the framework

of CBNs defines cause-effect relations in terms of the impact of external manip-

ulations. This definition contrasts those of frameworks which define causality80

in terms of information transfer [4, 34, 6, 35].

Causal relations between a set X of random variables are represented by

edges in a directed acyclic graph (DAG). The causal Markov condition (CMC)

relates the structure of a DAG, as represented by its edges, to statistical in-

dependence relations between the variables in X . Specifically, it states that85

every (conditional) independence implied by a DAG is also found in the joint

probability distribution p(x). We recall that two random variables x and y are

statistically independent (conditional on a third random variable z) if and only

if their joint distribution factorizes into the product of its marginals, i.e. if and

only if p(x, y) = p(x)p(y) (p(x, y|z) = p(x|z)p(y|z)). Intuitively, this states that90

observing x does not provide any information on how likely certain outcomes of

y are (and vice versa). We abbreviate statistical independence between x and
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y (conditional on z) as x ⊥⊥ y (x ⊥⊥ y|z). Assuming the CMC, (conditional)

independence relations can be read off the structure of a DAG by checking for

d-separation properties. A set of nodes D is said to d-separate x and y if every95

path from x to y contains at least one variable z such that either z is a collider

(→ z ←) and no descendant of z (including z itself) is in D; or z is not a collider

and z is in D. We provide examples of d-separation in the next paragraph and

refer the interested reader to [18] or [19] for a more exhaustive introduction

to the concept of d-separation. The CMC thus relates structural properties100

of DAGs to empirically observable independence relations. To perform causal

inference, we also need to relate empirically observable independence relations

to structural properties of the data-generating DAG. This is achieved by the

assumption of faithfulness. Faithfulness asserts that every (conditional) inde-

pendence relation in p(x) is implied by the structure of the associated DAG.105

Taken together, the CMC and faithfulness ensure that two variables x and y are

conditionally independent given z if and only if x and y are d-separated by z.

This equivalence gives us insight into the structure of a DAG from empirically

testable (conditional) independence relations.

We now provide three examples of d-separation that are relevant to our110

following arguments. First, consider the chain x → z → y. Here, x and y

are marginally dependent (x 6⊥⊥ y), because x influences y via z. However,

as z d-separates x and y by blocking the directed path from x to y, x and

y are statistically independent given z (x ⊥⊥ y|z). Second, consider the fork

x ← z → y. Again, x and y are marginally dependent (x 6⊥⊥ y), because they115

share a common cause z. This common cause z again d-separates x and y

by removing the joint effect of z on x and y, rendering x and y independent

conditional on z (x ⊥⊥ y|z). Third, consider the collider x→ z ← y. In this case,

x and y are independent (x ⊥⊥ y), because they are d-separated by the empty

set. Because z is a joint effect of x and y, however, it unblocks the previously120

blocked path between x and y, rendering x and y dependent conditional on z

(x 6⊥⊥ y|z).

These three examples form the basis of causal inference in CBNs. For in-
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stance, if we observe that x ⊥⊥ y yet x 6⊥⊥ y|z, then we can conclude that our

data has not been generated by a chain or by a fork. These observations limit125

the possible causal structures to only collider and DAGs with additional (latent)

variables. A more comprehensive introduction to the framework of CBNs in the

context of neuroimaging is given in [12].

2.2. Causal inference in stimulus-based paradigms

In this article, we only consider DAGs over a set of three random variables,130

V = {s, x, y}. The variables x and y represent brain state features, and s

represents an experimental condition. For our theoretical arguments, we assume

the joint probability distribution p(s, x, y) to be known. This assumption implies

that we have access to an oracle for any conditional independence relation in

V. We relax this assumption in section 2.4. Note that, while x and y may135

represent any measure of brain activity, it is helpful to consider trial-averaged

blood-oxygen-level-dependent (BOLD) activity at different cortical locations or

trial-averaged bandpower at two EEG channels as examples.

In the following, we assume that s codes a randomized experimental stimulus

that is presented to the subject before x and y are measured. This assumption140

leads to the following theorem.

Theorem 1 (Causal inference in stimulus-based paradigms). Let s, x, and

y be three random variables with a joint probability distribution p(s, x, y) that

is faithful to its generating DAG. Further, assume that s codes a randomized

experimental stimulus that is presented before x and y are measured. Then the145

following three conditions are sufficient for x to be a genuine cause of y (x→ y):

1. s is not independent of x (s 6⊥⊥ x),

2. s is not independent of y (s 6⊥⊥ y), and

3. s and y are independent conditional on x (s ⊥⊥ y|x).

Proof. To illustrate why theorem 1 is sufficient but not necessary for x to be150

a genuine cause of y, we first assume causal sufficiency; that is, we rule out
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the presence of latent confounders. We then extend the proof to also consider

unmeasured common causes.

Because s is a randomized experimental stimulus that is presented before

measuring x, any dependence between s and x (s 6⊥⊥ x) implies that s is a (not155

necessarily direct) cause of x [36]. This argument also applies to the relation

between s and y. Conditions one and two thus ensure that p(s, x, y) is generated

by a DAG in which s is a cause of x and of y. Figure 1 shows all possible DAGs

for the variable set {s, x, y} for which this is the case. In DAG A, the influence

of s on y is mediated by x. As such, x d-separates s and y, which implies160

s ⊥⊥ y|x. This establishes that the DAG s→ x→ y, in which x is a cause of y,

is consistent with the three conditions of theorem 1. Next, we must show that

DAG A is the only DAG consistent with these three conditions. This is easily

seen by noting that DAGs B–E contain an arrow from s to y. As such, in these

DAGs x does not d-separate s and y, so conditioning on x does not render s and165

y independent. This completes the proof of theorem 1 under the assumption of

causal sufficiency.

To extend the proof to also allow for latent variables, note that under the

assumption of faithfulness the condition s ⊥⊥ y|x implies that in the true DAG

– i.e., the (potentially latent) structure that generated p(s, x, y) – x d-separates170

s and y. This implication means every directed path from s to y must be

intersected by x. Because s is a cause of y, at least one such path exists and

contains a directed subpath from x to y (i.e., x→ y).

We emphasize that the conditions in theorem 1 are only sufficient but not

necessary for x to be a genuine cause of y. Indeed, DAG D in figure 1 is an175

example in which x is a cause of y yet s ⊥⊥ y|x does not hold. We further note

that the theorem actually only requires the following implication of faithfulness:

Given three variables s, x, y with s ⊥⊥ y|x, then every directed path from s to y

contains x as an intermediate node. This condition is close in spirit to partial

faithfulness defined for linear models in [37].180

We further note that s may represent stimuli of various complexity. For
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Figure 1: All DAGs for the set of variables {s, x, y} in which s is a cause of both x and y.

Note that we do not need to consider DAGs in which s is not a cause of both x and y, because

these DAGs are ruled out by conditions one and two of theorem 1

instance, s may encode whether a house or a face is shown to a subject. In this

case, x could be chosen to represent brain activity in a part of the visual cortex

that differentially responds to houses vs. faces. We could then use theorem 1

to investigate if brain activity in a higher cortical area, represented by y, is185

modulated by x. It is also admissible, however, for s to represent more complex

stimuli. For instance, s may represent the visual instruction to carry out one

of two cognitive tasks, such as performing a mathematical computation vs. re-

calling a positive memory. While it may be less straightforward to determine

the functional roles of x and y in this setting, e.g. whether x represents the190

visual instruction or the actual execution of the cognitive task, theorem 1 can

provide insights into the causal relation between the neural states as long as s

is randomized and presented to the subject before x and y are measured.

2.3. Regression-based conditional independence tests

While the first two conditions of theorem 1 are straightforward to test on em-195

pirical data, the third condition requires a non-trivial conditional independence

test. Conditional independence tests are complex because it is difficult to sam-

ple from the corresponding null-distribution [28]. We circumvent this problem

by using linear regression to convert a conditional to a marginal independence

test. This approach is based on the following theorem.200

Theorem 2 (Regression-based conditional independence tests). Let s, x, and

y be three random variables with joint probability distribution p(s, x, y). If there

exists a function f(x) s.t. y − f(x) ⊥⊥ (s, x), then s ⊥⊥ y|x.
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Proof. The mutual information of s and y given x can be expressed as

I(s; y|x) = I(s; y − f(x)|x) = I(y − f(x); (s, x))− I(y − f(x);x). (1)

Here, the first equality follows from the property that adding constants does205

not affect mutual information, and the second equality follows from the chain

rule for mutual information. If y − f(x) ⊥⊥ (s, x), then both terms on the right

side of (1) are zero. This implies that I(s; y|x) = 0 and hence that s ⊥⊥ y|x.

Instead of testing s ⊥⊥ y|x, we only need to check whether there exists a

function f(x) for which y− f(x) ⊥⊥ (s, x). This method is advantageous for two210

reasons. First, asymptotically consistent conditional independence tests are not

readily available, but marginal independence tests are [24, 25, 26]. Second,

it is sufficient to find one function for which y − f(x) ⊥⊥ (s, x) to conclude

that s ⊥⊥ y|x. Specifically, we show in section 3 that it is often sufficient to

consider linear functions of the form f(x) = ax + b. In contrast to causal215

inference methods based on partial correlation [21], our method does not require

the questionable assumption of joint Gaussianity. Naturally, this advantage

comes at a cost: Because the conditions of the regression-based conditional

independence test are only sufficient but not necessary for s ⊥⊥ y|x, our test

may fail to find certain types of conditional independence.220

2.4. The stimulus-based causal inference (SCI) algorithm

In this section, we discuss how to apply theorems 1 and 2 to empirical data.

If we had access to an oracle for conditional independence relations, it would be

straightforward to test the three conditions of theorem 1. In practice, however,

we only have access to a set {V1, . . . ,VN} of N samples Vn = {sn, xn, yn},225

which we assume to be independent and identically distributed (i.i.d.). Testing

the conditions of theorem 1 on this data set requires three statistical tests.

First, we must test whether s ⊥⊥ x; that is, we need to test whether the

brain state feature x is modulated by the experimental stimuli. This univariate

statistical test for independence can be done by using any established method230

for a given data modality; for example, a general linear model can be used
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for fMRI data [38], and a t-test can be used for bandpower changes in EEG

data [39]. Here, we choose an ordinary correlation analysis. In this analysis,

we first compute Pearson’s correlation coefficient ρs,x between s and x, and

then estimate the p-value under the null-hypothesis H01 : s ⊥⊥ x by randomly235

permuting the trial order of x 104 times. We count the instances in which the

absolute value of the resulting correlation coefficient ρH0
s,x exceeds the absolute

value of ρs,x, and reject H01 if we estimate the probability of |ρH0
s,x | > |ρs,x| to be

less than αrej = 0.01, i.e. if p < αrej. Second, we test the second null-hypothesis

H02 : s ⊥⊥ y using the same test procedure as for H01.240

Third, we test whether s ⊥⊥ y|x. Based on theorem 2, we first perform a

linear regression from x to y. We determine the slope a and intercept b that

minimize the sample variance of the residuals ŷn = yn − axn − b. We then use

the Hilbert–Schmidt independence criterion (HSIC) to test the null-hypothesis

H03 : ŷ ⊥⊥ (s, x) [25]. For this step, it is essential to use a non-linear test for245

statistical independence, rather than a correlation analysis, because zero corre-

lation only implies statistical independence under the restrictive assumption of

jointly Gaussian distributed variables. We apply the HSIC by first computing

HSICŷ,(s,x) between ŷ and (s, x), using a Gaussian kernel with the kernel width

set to the median distance between points in input space. We then estimate the250

p-value under the null-hypothesis by randomly permuting the trial order of ŷ 104

times. We accept H03 if we estimate the probability of HSICH0
ŷ,(s,x) > HSICŷ,(s,x)

to be greater than αacc = 0.25; i.e. if p > αacc. The parameters αrej and αacc

jointly control the power and the false discovery rate (FDR) of the SCI algo-

rithm. We justify our choice of these parameters in section 3.1. If we reject255

H01 and H02 and accept H03, we consider the conditions of theorem 1 ful-

filled and conclude that x is a genuine cause of y. A summary of the SCI

algorithm is given in table 1. Matlab code of the SCI algorithm is available at

http://brain-computer-interfaces.net.

We note that any non-linear test for statistical independence can be used to260

test H03 : ŷ ⊥⊥ (s, x). We have chosen the HSIC with a Gaussian kernel and the

kernel width set to the median distance between points in input space for three
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Input: N i.i.d. samples {sn, xn, yn} of two brain state features x and y and one

randomized experimental stimulus s, presented prior to recording of x and y.

Procedure:

1. Choose significance level αrej for rejecting independence; e.g. αrej = 0.01.

2. Choose significance level αacc for accepting independence; e.g. αacc = 0.25.

3. Test H01 : s ⊥⊥ x by using a correlation analysis. Reject H01 if the

resulting p-value is smaller than αrej.

4. Test H02 : s ⊥⊥ y by using a correlation analysis. Reject H02 if the

resulting p-value is smaller than αrej.

5. Perform a linear regression from x to y and compute the residuals ŷ.

6. Test H03 : ŷ ⊥⊥ (s, x) using a non-linear independence test such as the

HSIC [25]. Accept H03 if the resulting p-value is larger than αacc.

Result: If H01 and H02 are rejected and H03 is accepted, conclude that x is

a genuine cause of y: x→ y.

Table 1: Summary of the SCI algorithm.

reasons. First, the Gaussian kernel is a universal kernel [40]. This guarantees

that it detects any dependence in the large-sample setting [26]. Second, the

Gaussian kernel has been empirically found to work well in a wide variety of265

settings [41]. And third, we chose the heuristic proposed in [25] for the ker-

nel width to keep the number of statistical tests in section 3 computationally

tractable.

We further note that it is not possible to mathematically quantify the prob-

ability that the SCI algorithm returns a false positive test result, e.g. in analogy270

to a p-value in a traditional statistical analysis, because the SCI algorithm re-

quires the acceptance of a null-hypothesis to conclude that x is a cause of y.

We address this problem in section 3.1 by providing empirical estimates of the

FDR of the SCI algorithm in a variety of experimental settings.
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2.5. Relation to instrumental variables275

Instrumental variables (IVs) are used to estimate the causal effect of x on

y in settings in which interventions on x are not possible, e.g. due to ethical

considerations or technical constraints [29]. They have a long history in econo-

metrics [42, 43] and have more recently been applied in the context of genetics

[44, 45]. A variable z qualifies as an IV for the pair {x, y} if the following280

three conditions are fulfilled: a) z is statistically independent of all joint (and

potentially hidden) common causes of x and y; b) z is not independent of x;

and c) the effect of z on y is mediated solely by x. The SCI algorithm can be

interpreted as a statistical test whether s qualifies as an IV for the pair {x, y}.

In particular, condition a) is fulfilled by construction, because s is randomized;285

condition b) is tested by condition one of theorem 1; and condition c) holds if all

three conditions of theorem 1 are fulfilled. As such, the SCI algorithm may be

used to screen neuroimaging data for pairs {x, y} for which s qualifies as an IV.

Under certain constraints, this enables the computation of the average causal

effect of x on y [29, 44]. In the present work, we only use the SCI algorithm to290

test whether x is a cause of y.

3. Results

In this section, we study the performance of the SCI algorithm on simulated

as well as on experimental data. We first investigate the power and the FDR

of the SCI algorithm on simulated data that we generated with neural mass295

models for spectral responses in electrophysiology [30]. We then demonstrate the

application of the SCI algorithm to a group-level causal analysis on experimental

EEG data that we recorded as part of a study on brain-computer interfacing

[31].

3.1. Simulation results300

The power and the FDR of the SCI algorithm describe its ability to cor-

rectly detect a causal influence of x on y and to ignore causal models in which
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this is not the case, respectively. Both metrics are likely to depend on various

experimental parameters, such as the strength of the correlations between s, x,

and y, the number of available i.i.d. samples of {s, x, y}, the significance level305

αrej for rejecting independence, and the significance level αacc for accepting in-

dependence. In this section, we estimate the power and the FDR of the SCI

algorithm when varying these parameters. We base these estimates on simu-

lation data that we generated with a neural mass model (NMM) for spectral

responses in electrophysiology [30]. This model is an extension of the Jansen-310

Rit model [46]. It consists of a set of non-linear ordinary differential equations

(ODEs) that model the dynamics of postsynaptic membrane potentials of exci-

tatory and inhibitory cells in a cortical column. Solving the ODEs by numerical

integration results in time-series which resemble the spectral characteristics of

electromagnetic fields that are generated by cortical columns. Coupling multi-315

ple NMMs and varying their connection strengths then enables us to study the

performance of the SCI algorithm in a variety of experimental settings.

We simulated the five causal models shown in figure 1. We did not include

causal models in the simulations in which s is not a cause of x and of y, because

such models can be rejected by traditional statistical methods [13]. For each320

of the DAGs in figure 1, the nodes x and y were simulated by one NMM, with

the edges between the nodes specifying the connections between the NMMs.

The stimulus s was modeled by applying a bandpass filter in the γ-range (55–

85 Hz) to white noise and varying the noise amplitude in accordance with the

stimulus labels (plus or minus one) around a common offset. For each of the325

five models, we simulated four experimental settings, in which we varied the

strength of the stimulus’ input to the NMMs to obtain different correlation

strengths between s, x, and y. For each of the four settings, we simulated

500 trials (250 per stimulus label) with a duration of five seconds at a sampling

frequency of 500 Hz. The generated time-series of each trial were then windowed330

with a Hann window and log-bandpower between 55 and 85 Hz was computed

by a fast Fourier transform (FFT). This resulted, for each causal model and

experimental setting, in a set of n = 1, . . . , 500 i.i.d. samples {sn, xn, yn}, where
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s represents the stimulus’ label (plus or minus one) and x and y represent

trial-averaged log-bandpower in the γ-range of the two NMMs. For each causal335

model and experimental setting, we used all 500 trials to compute Pearson’s

correlation coefficients between s, x, and y, which are subsequently denoted as

ρs,x, ρs,y, and ρx,y. Matlab code for generating the simulation data, including

all parameters used in the simulations, is available as part of the SCI software

package at http://brain-computer-interfaces.net.340

To estimate the power and the FDR as a function of the number of available

samples, we randomly drew N samples (without replacement) per stimulus label

from each of the 20 models and then applied the SCI algorithm as described in

table 1 and implemented in the SCI software package. We varied N between

ten and 100 in steps of ten and repeated this process 500 times for each choice345

of N . We fixed αrej = 0.01 and varied αacc between zero and 0.5 in steps of

0.01. For each setting, we then estimated the power of the SCI algorithm as

the percentage of instances in which it correctly inferred a causal influence of x

on y. We estimated the FDR as the percentage of instances in which the SCI

algorithm incorrectly detected a causal influence of x on y.350

The results of this simulation study are displayed in figure 2. The rows rep-

resent the causal models and the columns the experimental settings with various

correlation strengths (displayed above each sub-figure). The colors depict the

estimated power (for rows A and E) and FDR (for rows B–D) as a function of

the significance level αacc and of the number of samples per stimulus label. We355

note in row A that the power of the SCI algorithm increases with the number

of available samples and with the strength of the correlations between the triple

{s, x, y}. Its power decreases with αacc. We note that the SCI algorithm re-

quires strong correlations between {s, x, y} and/or a large number of trials to

achieve high power. For very strong correlations, the SCI algorithm achieves360

a power close to 100% with as few as 30 trials per condition (fourth and fifth

column). We further note in rows B–D that with a reasonable number of sam-

ples per condition (≥ 30) and αacc ≥ 0.1 the FDR remains below 2% in all

experimental settings. Finally, we point out that, as predicted by theorem 1,
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the SCI algorithm fails to detect a causal influence of x on y if s does not affect365

y solely via x (row E).

In summary, the SCI algorithm maintained a very low FDR across all tested

simulation settings. We found its power to strongly depend on the strength of

the correlations between {s, x, y} and on the number of available samples. We

suggest a choice of αacc = 0.25, αrej = 0.01 and at least 30 samples per condition.370

Based on the simulation results, we estimate this to enforce a FDR below 1.5%

while resulting in a power of up to 90%. We emphasize that our simulation

results indicate that the SCI algorithm requires reasonably large correlations

between {s, x, y} or a large number of samples to achieve high power. The

power of the SCI algorithm can be enhanced by increasing αrej, but this comes375

at the expense of a larger FDR.

3.2. Experimental results

We now demonstrate the application of the SCI algorithm to a group-level

causal analysis on experimental data that we recorded as part of a study on

brain-computer interfacing [31]. In this study, healthy subjects were trained380

via EEG-based neurofeedback to self-regulate the amplitude of γ-oscillations

(55–85 Hz) in the right superior parietal cortex (SPC). The data from this

study is particularly suited to illustrate the performance of the SCI algorithm,

because, first, the right SPC is a primary node of the central executive network

(CEN) [47], and, second, stimulation of the CEN by TMS has been found to385

modulate the medial prefrontal cortex (MPC) [33]. This allowed us to formulate

the following causal hypothesis: Variations of γ-power in the right SPC (γSPC),

which are induced by the instruction (s) to up- or down-regulate γSPC, modulate

γ-power in the MPC (γMPC), i.e. s→ γSPC → γMPC. We now demonstrate how

to test this causal hypothesis with the SCI algorithm.390

3.2.1. Experimental setup and data

Subjects were placed in front of a computer screen, about 1.5 m away, and

received visual feedback on their current level of γ-power (55–85 Hz) in the right
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Figure 2: Power and FDR of the SCI algorithm on simulated spectral EEG responses as a

function of the number of available samples and of the significance level αacc for accepting

independence. The significance level for rejecting independence was set to αrej = 0.01. The

rows represent the simulated causal models. The columns represent experimental settings

with varying correlation strengths. Note the different color range between row A and rows

B–E.
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Figure 3: Spatial transfer function of the beamformer used for neurofeedback, focused on the

right SPC (cf. [31] for details).

SPC. The feedback signal was computed by first applying a linearly-constrained-

minimum-variance (LCMV) beamformer [48], aimed at the right SPC, to a 121-395

channel EEG recording at sampling rate of 500 Hz. The noise covariance matrix

for the beamforming procedure was estimated from five-minute resting-state

EEG data recorded prior to each feedback session. Figure 3 shows the spatial

transfer function of the beamformer, focusing on the right SPC (cf. [31]). The

past five seconds of the beamformed signal were then windowed with a Hann400

window, and the log-bandpower from 55 to 85 Hz was computed by a FFT.

Then the current level of γ-power in the right SPC, subsequently termed γSPC,

was linearly mapped to the vertical position of a white ball displayed on the

computer screen. The center of the screen represented the median γSPC during

the resting-state baseline, and the upper and lower limits of the screen repre-405

sented the addition and subtraction of two standard deviations, respectively.

The horizontal position of the ball was fixed to the center of the screen. Visual

feedback was updated at a frame rate of 25 Hz. All online data processing was

implemented in BCI2000 [49].

In each trial, subjects were instructed to move the feedback ball to a yellow410

rectangle displayed at the top or bottom of the screen. After one minute the

white ball disappeared, and the subjects were instructed to rest for five seconds

before attempting the next trial. In each session, subjects performed three

blocks of 20 trials in pseudo-randomized order with a brief intermission between
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each block, giving a total of 30 trials per condition.415

Three healthy subjects were invited for five feedback sessions each. Because

the subjects required multiple training sessions to reliably self-regulate γSPC,

we only analyze data from the last two sessions of each subject.

3.2.2. Data pre-processing

To attenuate confounding by non-cortical processes, we cleaned the data420

of each session of artifacts by using an independent component analysis (ICA)

[50]. Specifically, we first high-pass filtered each data set by using a 3rd-order

Butterworth filter with a cut-off frequency of 3 Hz, reduced it to 64 dimensions

by principal component analysis (PCA), and then separated it into independent

components (ICs) using the SOBI algorithm [51]. We then sorted ICs according425

to their neurophysiological plausibility [52], and inspected each of their topog-

raphy, spectrum, and time-series. We rejected an IC as non-cortical when it

exhibited at least one of the following four criteria [53, 31]: (1) The spectrum

did not show the 1/f -behavior typical of a cortical source. In particular, we re-

jected ICs that displayed a monotonic increase in spectral power starting around430

20 Hz, which is characteristic of muscular activity [54]. (2) Eye blinks were de-

tectable in the time-series. (3) The topography did not show a dipolar pattern.

(4) The time-series appeared to be contaminated by other noise sources such as

50 Hz line noise or large spikes. We then re-projected the remaining ICs to the

scalp. Note that, while ICA can attenuate artifacts in the signal, the ill-posed435

nature of the EEG inverse problem means that non-cortical processes cannot be

completely eliminated [55].

To investigate causal relations between cortical sources, rather than between

EEG electrodes, we performed a source-localization procedure. We used an

LCMV beamformer on the raw EEG data of each session to estimate the time440

courses of M = 15028 current dipoles distributed across the cortical surface, us-

ing standardized electrode locations and a three-shell spherical head model [56].

We further applied the beamformer, which we used for the online neurofeedback

in each session, to compute the time course of the neurofeedback signal after at-
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tenuating non-cortical processes by ICA. We then computed the trial-averaged445

log-bandpower in the γ-range of each signal, again using a FFT in conjunction

with a Hann window. Thus, for each recording session, we obtained N = 60

samples of the M data sets Vmn = {sn, γSPC,n, γm,n}; sn represents the visual

stimulus in the nth trial (coded as plus or minus one) that instructs subjects to

either up- or down-regulate γSPC, γSPC,n is the trial-averaged log-bandpower in450

the γ-range in the right SPC, and γm,n is the trial-averaged log-bandpower in

the γ-range at the mth cortical location.

We note that the mean correlation strengths across all subjects, sessions

and cortical locations for this data set are ρs,γSPC
= 0.68, ρs,γm = 0.61, and

ργSPC,γn = 0.81. Based on the simulation results in section 3.1, these correlation455

strengths are sufficient to expect a high power of the SCI algorithm.

We further note that while beamforming is known to be blind to perfectly

correlated sources [48, 57], such sources violate the faithfulness assumption (con-

dition three of theorem 1 is trivially true when x and y are perfectly correlated).

We thus consider this property of beamformers an advantageous feature in the460

present context.

3.2.3. Group-level SCI results

We used the SCI algorithm to test the causal hypothesis s → γSPC → γm

for each of the cortical sources estimated by the source localization procedure,

as described in section 3.2.2. To apply the SCI algorithm to group-level data,465

while avoiding problems associated with pooling data from multiple subjects

[9], we computed a group-level statistic. Specifically, we used the fact that, by

definition, p-values are drawn from a uniform distribution with support from

zero to one if the null-hypothesis is true. We will now illustrate how this let us

test null-hypotheses on the group level on H01 : s ⊥⊥ γSPC, the null-hypothesis470

which states that the instruction given to subjects in each trial is independent

of γ-power in the right SPC (cf. step 3 in table 1).

We first used a correlation analysis to test this null-hypothesis on the level

of individual sessions, as described in section 2.4. Table 2 shows the correlation
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Table 2: Pearson’s correlation coefficients between γSPC and the experimental conditions (up-

and down-regulation of γSPC).

Subject 1 Subject 2 Subject 3

Session 4 0.80 (p < 10−4) 0.35 (p = 0.0026) 0.86 (p < 10−4)

Session 5 0.84 (p < 10−4) 0.37 (p = 0.0021) 0.83 (p < 10−4)

coefficients and associated p-values generated by this analysis. To test H01475

on the group level, we then computed the empirical cumulative distribution

function (CDF) of these p-values and quantified its deviation from the CDF of

a uniform distribution of p-values. Specifically, we created one hundred bins

between zero and one and summed, across all bins, the absolute differences

between the empirically observed CDF and the one generated by drawing the480

same number of samples from a uniform distribution between zero and one.

We then sampled this test statistic from the null-distribution 104 times. This

let us estimate the probability of observing the p-values in table 2 under H01.

We found p < 10−4 < αrej = 0.01 for the resulting group-level p-value, so we

rejected H01 on the group level.485

We then tested H02 : s ⊥⊥ γm on the group level in the same manner.

Because there are multiple comparisons for each of the M cortical sources, we

corrected the group-level significance level using a FDR of 0.01 [58].

Finally, we performed a linear regression for each of the M cortical sources

from γSPC to γm to estimate the residuals γ̂m, and then tested H03 : γ̂m ⊥⊥490

(s, γSPC) using the HSIC criterion described in section 2.4. Using the same

group-level approach as for H01 and H02, but without using FDR correction

to remain conservative, we accepted H03 if we found the resulting group-level

p-value to be greater than αacc = 0.25.

Figure 4 shows a cortical map of sources for which we rejected H01 and495

H02 but accepted H03; that is, the cortical sources which we inferred to be

modulated by γ-power in the right SPC. Consistent with our hypothesis, we

found the most prominent modulation target of the right SPC to be bilaterally
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Figure 4: Results of the SCI analysis. The SCI value denotes the percentage of dipoles within

a radius of 7 mm that are modulated by the neurofeedback target area in the right SPC,

indicated by a pink circle. From these results, we infer the primary targets of the right SPC

to be the MPC and the right aMFG.

in the MPC. In addition, the SCI algorithm inferred that the right anterior

middle frontal gyrus (aMFG), a node of the salience network [59, 33], was also500

modulated by the right SPC.

To provide further empirical support for these conclusions, we varied αacc

between 0.1 and 0.8. This did not have a qualitative effect on our causal conclu-

sions. Furthermore, we repeated the SCI analysis while reversing the direction

of the causal tests; that is, we tested whether s→ γm → γSPC for each of the M505

dipoles. For the original choice of αacc = 0.25, this reversal caused the analysis

to generate only 9/15028 = 0.06% positive test results scattered throughout

the brain, relative to 4674/15028 = 31.1% positive tests in the original causal

direction.
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4. Discussion510

We conclude the article with a discussion of the utility of causal inference in

neuroimaging (section 4.1), the strengths and (current) limitations of the SCI

algorithm (section 4.2), and the promise the SCI algorithm holds for the study

of the neural basis of cognition (4.3).

4.1. Causal inference in neuroimaging515

Only interventional studies can prove causal relationships. Interventional

studies, however, are often costly and time-consuming. Causal inference meth-

ods can be used to screen large datasets for potential causal relations, which

may then be validated by subsequent interventional studies. In this way, the

number of interventional studies, that are on average required to prove a sin-520

gle causal relation, can be substantially reduced [60]. In order to exploit this

strength, it is essential that causal inference methods predict the effects of ex-

ternal manipulations. Methods based on CBNs, including the SCI algorithm,

give testable predictions on the effects of external manipulations [18], while it is

less straightforward to do so in frameworks based on information flow [35, 61].525

We consider it essential for progress in neuroimaging that studies on brain con-

nectivity clearly distinguish between these concepts.

4.2. Summary of the SCI algorithm

The utility of causal inference for planning future interventional studies de-

pends on the power and on the FDR of the employed method. In order to reduce530

the probability of false positive results, it is essential to control for latent con-

founding. The primary strength of the SCI algorithm is its ability to control for

any latent confounder. Its further advantages are, first, that it does not require

brain state features to have a jointly Gaussian distribution [21], and, second,

that it implicitly tests its inherent assumptions. Because theorem 2 provides535

sufficient conditions for conditional independence, the presence of empirical evi-

dence suggesting a genuine causal influence means that the linearity assumption

of the regression-based conditional independence test is fulfilled. The drawbacks
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of our method are, first, that it is only applicable in stimulus-based settings,

and, second, that it fails to find genuine causal relations in the presence of non-540

linear dependencies. We do not consider the latter issue a strong limitation,

however, because the empirical evidence for BOLD signals and electrophysio-

logical recordings suggests that their feature relations are predominantly linear

[62, 63]. It implies, however, that a lack of evidence in favor of a genuine causal

relation may not be interpreted as evidence against it.545

The assumption of faithfulness, however, is difficult to test on empirical

data [64]. Faithfulness states that all (conditional) independence relations in

observed data are implied by the generating DAG. In theory, faithfulness is a

rather weak assumption. Because the set of unfaithful distributions for a given

DAG has measure zero [65], it is a priori unlikely that experimental data is550

sampled from an unfaithful distribution. In practice, however, distributions

close to unfaithfulness may make it difficult to discover residual dependencies

in finite data, which may generate false positive test results [66]. While our

simulation results suggest that the SCI algorithm has a low FDR in a variety of

experimental settings, its performance may be further optimized by considering555

different kernels and/or optimizing the bandwidth for the HSIC test.

4.3. Causal inference on the neural basis of cognition

In the present article, we have focused on studying causal relations between

pairs of neural states. The SCI algorithm, however, can be applied to any

arbitrary combination of data modalities. As such, it is straightforward to apply560

it to the study of the neural basis of cognition. Specifically, we can test causal

hypotheses of the form s→ x→ r, where s represents an experimental stimulus,

x refers to a neural state, and r measures a behavioral response. In this way, we

can ask whether a brain state x is likely to be a cause of a behavioral response

r. We note that r may operationalize cognitive states of arbitrary complexity,565

ranging from simple behavioral responses to complex personality traits. It may

not be trivial, however, to identify experimental stimuli that modulate a certain

type of response variable. Depending on the complexity of r, it may also not
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be sufficient to consider one-dimensional neural states x. Instead, we may have

to consider causal models of the form s → wTx → r, where x is a vector of570

neural states and we wish to identify the linear combination(s) w such that the

conditions tested by the SCI algorithm are fulfilled. This would enable us to

consider multivariate patterns of brain activity as the neural bases for cognitive

states.
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