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Outline

1 why the relation between statistics and causality is tricky

2 causal inference using conditional independences
(statistical and general)

3 causal inference using other properties of joint
distributions

4 causal inference in time series, quantifying causal
strength

5 why causal problems matter for prediction
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Part 3: Why causality matters for prediction

• Typical scenarios of machine learning
supervised learning, unsupervised learning, semi-supervised
learning

• Causality and semi-supervised learning

• Some methods of machine learning
support vector machines, reproducing kernel Hilbert spaces

• Prediction from many variables
Markov blanket

• Kind of summary
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Typical scenarios of machine learning
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Typical machine learning problems

• read hand-written letters/digits (given as pixel vectors)

• classify the topics of documents (i.e. in the internet)

• predict the structure of proteins from their acid sequence

• classify cell tissue into tumors and healthy tissue from gene
expression data
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Scenario with i.i.d. data

Task: predict y from x after observing some samples i.i.d. drawn
from P(X ,Y ).
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The variables may attain values in a high-dimensional space (e.g.
pixel vector in R20·20, gene expression vector in R28,000)
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Regression and classification

• Regression: continuous label Y

Y

X

f

• Classification: discrete label Y

X
1
X
1

X
2

Y=+1

Y=-1

classifier
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Supervised, unsupervised and semi-supervised learning
e.g. Chapelle et al: Semi-supervised learning, MIT press, 2006

Learn to predict Y from X , given some observations. Which
observations are given?

• supervised learning:
some pairs (x1, y1), . . . , (xn, yn)

• unsupervised learning:
only unlabelled x-values x1, . . . , xk

• semi-supervised learning (SSL):
some pairs (x1, y1), . . . , (xn, yn) and some unlabelled x-values
xn+1, . . . , xn+k

7



Unsupervised classification

X
1
X
1

X
2

separate clusters are believed to correspond to different labels y :

X
1
X
1

X
2

Y=+1

Y=-1

classifier
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Semi-supervised classification

some points are labeled:

X
1
X
1

X
2

then we believe even more that the clusters correspond to different
labels:

X
1
X
1

X
2

Y=+1

Y=-1

classifier

unlabeled points tell us position and angle of the hyperplane
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Another example of semi-supervised classification...

source: http://en.wikipedia.org/wiki/Semi-supervised learning

Here, the shape of the clusters tells us something about the shape
of the classifier.
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Semi-supervised regression

• Given: multi-dimensional X and real-valued Y

• Task: infer function f such that y ≈ f (x)

• Observation: x-values essentially form a lower dimensional
manifold of a higher dimensional space

X
2

X
1

11



Semi-supervised smoothness assumption

• Assumption: the map x 7→ f (x) changes smoothly along the
manifold

• Hence: the green and the yellow pojnts have the same
distance to the blue one, the green one is more likely to have
a similar y

• semi-supervised regression tries to find functions that fit the
labeled data while changing smoothly along the manifold
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Motivation for semi-supervised learning

• often it’s expensive to get labeled data

• while unlabeled ones are cheap

Examples:

• classify text w.r.t. its topic: labeling needs to be done by
humans. Unlabeled documents are ubiquitous (e.g. in the
internet)

• object recognition on images
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Causality and semi-supervised learning
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

X Y X Y

causal setting: predict effect from cause
e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
e.g, breast tumor classification,

image segmentation

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

X Y X Y

causal setting: predict effect from cause
e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
e.g, breast tumor classification,

image segmentation

SSL pointless because P(X )
contains no information about P(Y |X )

SSL can help because P(X ) and P(Y |X )
may contain information about each other

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Known SSL assumptions link P(X ) to P(Y |X )

• SSL smoothness assumption: the function x 7→ E[Y |x ] should
be smooth in regions where p(x) is large.

• Cluster assumption: points lying in the same cluster are likely
to have the same Y .

• Low density separation: The decision boundary should lie in a
region where p(x) is small.

The above assumptions can indeed be viewed as linking
properties of P(X ) to properties of P(Y |X ).
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Consider classification in causal direction

• Assume X is the cause with some distribution P(X ):

X
1
X
1

X
2

• Let Y be binary and P(Y |X ) be some deterministic rule, e.g.,
a separating hyperplane. Assume ‘nature chooses’ it
independently of P(X ):

X
1
X
1

X
2

X
1
X
1

X
2
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Consider curved clusters...

X
1
X
1

X
2

X
1
X
1

X
2

why should the shape of the line describing P(Y |X ) care about the
shape of P(X )?
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Recall semi-supervised regression

We said: close points should have similar values f (x) if they have a
short connection along the manifold
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Can be justified if Y → X

Let Y and X take values in R and R2, respectively and

X = (g1(Y ), g2(Y )) + U ,

where g1, g2 are continuous functions and U is a small noise vector.

if y is close to y ′ then x , x ′ are close along the manifold

(isolines could be like the red lines)
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Not justified for X→ Y

Choose a function f : R2 → R independent of P(X )

Then the isolines of f are nor related to the manifold on which the
x-values lie

22



Does SSL only work in anticausal direction?

Meta-study:

• we searched the literature for empirical results on SSL with
real data

• we decided (after several discussions) whether a data pair is
causal or anticausal or unclear
(here strongly confounded pairs were also considered
anticausal)

• it turned out that none of the sucessful cases was causal

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Semi-supervised classification: 8 benchmark datasets

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Comparison of 11 SSL methods with the base classifiers 1-NN and SVM (star).

• In the causal case (red) the star is below the other points, i.e., SSL
performed worse than methods without SSL

• In the other cases the star is often above the other points, SSL helped.
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Comparison of 11 SSL methods with the base classifiers 1-NN and SVM (star).

• In the causal case (red) the star is below the other points, i.e., SSL
performed worse than methods without SSL

• In the other cases the star is often above the other points, SSL helped.
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Semi-supervised classification: 26 UCI datasets

[Y. Guo et al., 2006] An extensive empirical study on semi-supervised learning.
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Semi-supervised classification: 26 UCI datasets
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Anticausal/Confounded
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Unclear

Comparison of a SSL method with 6 corresponding non-SSL-based
classifiers.

• all red points are below or on the zero line, i.e., SSL performed
worse or equal than all the non-SSL-based methods

• blue and green points are sometime above the line, i.e., SSL helped.

26



to understand how SSL works...

Some basic ideas of machine learning

27



Binary classification

Examples:
• distinguish between 0 and 1 from given pixel vectors in hand

written digits
• distinguish between healthy cells and tumor cells given the

vector of gene expression levels

y=1

y= ­1

?

• given: some training examples (x1, y1), . . . , (xn, yn) with
xj ∈ Rk and yj ∈ {−1,+1} (two classes)

• goal: find a function f that separates the two classes
• assumption: there is a linear classifier, i.e., an affine f such

that f (xj) > 0 if and only yj = +1
28



Popular solution: support vector machine Vapnik 1963

see also Schölkopf & Smola: Learning with kernels

choose the hyperplane that maximizes the margin:
find w ∈ Rk and b ∈ R that minimize ‖w‖2 subject to

yj(〈w, xj〉+ b) ≥ 1 ∀j = 1, . . . , n

y=1

y= ­1

.
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Support vectors

The support vectors are those xj that lie on the boundary of the
margin:

y=1

y= -1

.

support vectors

observations:

• points other than support vectors are irrelevant for the
optimization

• the optimal w lies in the span of the support vectors
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Soft margin SVMs

Often there is no hyperplane that classifies all points correctly:

y=1

y= -1

error terms
(slack variables)

maximize margin while avoiding too large error terms
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How can we include unlabelled points?

32



Transductive support vector machine

see e.g. Joachims: Transductive support vector machines, 2006

y=1

y= -1

new maximum margin hyperplane

old maximum 
margin hyperplane

maximize the margin using also the unlabelled points
(yields computationally hard optimization problem)
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Non-linear classification

X
1
X
1

X
2

here we need a non-linear function f for classification

In other words: find a function f for which f (xj) > 0 if yj = +1
and f (xj) < 0 if yj = −1.
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Non-linear classification via feature maps

• define a map φ that maps x to non-linear functions of x :

φ(x) :=



f1(x)
f2(x)
f3(x)
.
.
.

 ∈ H

• in this high-dimensional space H, a non-linear function may
turn into a linear one

• example: let x = (x1, x2) ∈ R2 and define

φ(x) :=

(
x2

1

x2
2

)
.

Then the circle x2
1 + x2

2 = 1 is given by the linear equation

φ1(x) + φ2(x) = 1
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‘Powerful’ feature maps

• we don’t need to design a different feature map for every
problem
(for instance one that already knows the classifier)

• it will turn out that there are feature maps that are so
powerful that they can always be used

• idea: choose a map that contains an infinite set of functions,
e.g.,

φ(x) =



x
x2

x3

.

.

.

 .
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The kernel trick: we don’t need φ itself...

Define the function

k(x, x′) := 〈φ(x), φ(x′)〉 .

• recall optimization problem:
minimize ‖w‖2 subject to

yj(〈w, xj〉+ b) ≥ 1 ∀j = 1, . . . , n

• recall that the optimal w can be written as

w =
∑
j

ajφ(xj)

with some appropriate a

• to classify a new point x we only need to compute∑
j

aj〈φ(xj), φ(x)〉 =
∑
j

ajk(xj , x) .
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General remarks

• Many other machine learning algorithms also rely on inner
products only

• Then it is sufficient to know the ‘kernel’ k instead of knowing
φ explicitly

• k can be rather simple functions even for complex φ.
Example: for

φ(x) :=



1√(d
1

)
x√(d

2

)
x2

.

.√(d
d

)
xd


,

we have

k(x , x ′) = 〈φ(x), φ(x ′)〉 = (xx ′ + 1)d .
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Define vector spaces by kernels

Turning around the idea: define a vector space via the kernel.

Question:
Given a function

(x , x ′) 7→ k(x , x ′) ,

under which condsitions is there a map φ such that

k(x , x ′) = 〈φ(x), φ(x ′)〉 ?
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Positive definite functions

Definition

A function k : X × X → R is called a positive definite kernel if for
all k ∈ N and any x1, . . . , xk , the matrix k(xi , xj) is positive
definite, i.e., ∑

ij

cicjk(xi , xj) ≥ 0 ,

for all vectors c ∈ Rk .

Idea: positive definite functions are like positive definite matrices
with continuous index x

40



Feature maps define positive definite kernels

Theorem

Let H be a real-valued vector space with inner product and and
φ : X → H be a map then

k(xi , xj) := 〈φ(xi ), φ(xj)〉

is a positive definite kernel

Proof: ∑
ij

cicj〈φ(xi ), φ(xj)〉

=

〈∑
i

ciφ(xi ),
∑
j

cjφ(xj)

〉
≥ 0 .
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Terminology: Hilbert spaces

• (possibly infinite-dimensional) vector space H
• endowed with an inner product

〈., .〉 : H×H → R
〈., .〉 : H×H → C

• complete w.r.t. inner product norm, i.e., every Cauchy
sequence in H has a limit in H

Examples: Cn,Rn, L2(R), `2(N)
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Defining Hilbert spaces via kernels

Theorem (Proposition 2.14 in Schölkopf & Smola, 2002)

Let X be a topological space and k : X × X → R be a continuous
positive definite kernel, then there exists a Hilbert space H and a
continuous map φ : X → H such that for all x , x ′ ∈ X , we have

k(x , x ′) = 〈φ(x), φ(x ′)〉 .

Hence: feature maps φ define kernels and vice versa
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Examples for kernels

• Gauss kernel: k : Rn × Rn → R

k(x, x′) := e
−‖x−x′‖2

2σ2 .

• polynomial kernel:

k(x, x′) := 〈x, x′〉d

• inhomogeneous polynomial kernel:

k(x, x′) := (〈x, x′〉+ 1)d
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Reproducing kernel Hilbert space (RKHS)

How to get H from k :

• Every x defines a function fx : X 7→ R via

fx(x ′) := k(x , x ′) .

• Define an inner product by

〈fx , fx ′〉 := k(x , x ′) .

• Let H be the smallest Hilbert space containing all these
functions (fx)x∈X with the above inner product
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Gauss kernel is powerful

Define

k(x, x′) := e
−‖x−x′‖2

2σ2 ,

then there is a sense in which every continuous function can be
approximated by elements in H
Therefore, support vector machine with the Gaussian kernels are
able to find curved separating hyperplanes:

X
1
X
1

X
2
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Likewise...

Transductive SVM with Gauss kernels is able to find curved
separating hyperplanes based on the pattern of the unlabeled
points:

X
1
X
1

X
2
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Applications of SSL

e.g. Nigam et al: Semi-supervised text classification using EM, 2006

Text classification

• task: assign a topic y to a document x in the internet

• given: a few labelled documents (x1, y1), . . . , (xn, yn)
(expensive, done by humans), and a huge number of
unlabelled examples xn+1, . . . , xn+k

• idea: different topics correspond to clusters in
high-dimensional space
(x vector of word counts, i.e., x ∈ Nd

0 where d is the size of
the vocabulary)
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Prediction from many variables
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Prediction tasks where causal information may be
irrelevant

Health Insurance company asks a costumer before giving a
contract:

• age

• job

• hobbies

• address

to determine the risk of getting sick.

It does not matter whether these features are causal or not -
properties that correlate with the risk are useful regardless of they
are causes!
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Markov blanket (set of relevant variables)

• given: causal DAG with nodes X1, . . . ,Xn

• task: predict Xj from all the other variables

• obvious solution: best prediction given by

p(Xj |X1, . . . ,Xj−1,Xj+1, . . . ,Xn) .

• goal: remove irrelevant nodes

• question: what’s the smallest set of variables S such that

Xj ⊥⊥ XS |XS̄ \ Xj ?

• answer: Markov blanket, i.e., the parents and the children of
Xj , and the other parents of the latter (if we assume
faithfulness)
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Proof that Markov blanket is the smallest set

• Let M(j) be the Markov blanket of Xj . Then

Xj ⊥⊥ XM(j) |X ¯M(j) \ Xj , (1)

can be checked via d-separation

• every set S satisfying (1) contains M(j):
• no set can d-separate Xj from its parents or children.

Therefore they are contained in S
• conditioning on the children of Xj unblocks the path to the

parents of the children, no matter which variables we condition
on
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Markov blanket Pearl 1988

• Definition via causal terminology:
consists of parents, children and further parents of the children

• Definition via predictive relevance:
minimal set of variables that render all others irrelevant

Two perspectives:

• Causal structure tells us which variables are irrelevant because
they are conditionally independent

• Conditional independences tell us causal structure

Argument for causality seems circular!
53



Predicting from causes is more robust

B

C

E

V

P(V |C ) predicts V from its cause

(‘causal prediction’)

P(V |E ) predicts V from its effect

(‘anticausal prediction’)

• P(V |E ) changes when background condition B changes
because V 6⊥⊥ B |E

• P(V |C ) remains constant (‘covariate shift’) since V ⊥⊥ B |C .
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij ICML 2012
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Kind of summary
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Two types of asymmetries between cause and effect

• Independence based assumption: P(C ) and P(E |C )
contain no information about each other because ‘nature
chooses them independently’

• no SSL in causal direction
• P(C ) ansd P(E |C ) are algorithmically independent
• p(C ) is not particualrly large in regions where f has large slope

(IGCI)

• Occam’s Razor assumption: Decomposition of P(C ,E ) into
P(C )P(E |C ) tends to be simpler than decomposition into
P(E )P(C |E )

• P(E |C ) may be of some simple type, e.g. non-linear additive
noise, while P(C |E ) isn’t

• some Bayesian method not mentioned
• K (P(C )) + K (P(E |C )) ≤ K (P(E )) + K (P(C |E ))
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Relating the two types via a toy model

• choose P(C ) randomly from some finite set Pi (C ) with
i = 1, . . . , n

• choose P(E |C ) randomly from some finite set Pj(E |C ) with
j = 1, . . . , n

• then Pi (C )Pj(E |C ) defines n2 different distributions Pij(C ,E )

• generically, this yields n2 different distributions Pij(E ) and
Pij(C |E )

• hence, the backwards conditionals P(E ) and P(C |E ) run over
a larger set
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Future work

find appropriate ways to compare complexities of P(X ),P(Y |X ) to
P(Y )P(X |Y )
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Psychology

Humans intuition about anticausal conditionals P(C |E ) can be
pretty bad:

• Consider a random walk on Z
• Let Xt be the position at time t

• Let p(Xt+1|Xt) = 1/2 for |Xt+1 − Xt | = 1

• Try to infer p(Xt |Xt+1)

59



Psychology

Humans intuition about anticausal conditionals P(C |E ) can be
pretty bad:

• Consider a random walk on Z
• Let Xt be the position at time t

• Let p(Xt+1|Xt) = 1/2 for |Xt+1 − Xt | = 1

• Try to infer p(Xt |Xt+1)

• Many people think it would also be symmetric, i.e., given
Xt+1, the two possibilities Xt = Xt+1 ± 1 would be equally
likely

We are used to think in terms of causal conditionals, because they
define the mechanisms
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State of the art and outlook

• Asymmetries of cause and effect do exist (at least in the sense
that decision rate above chance level is possible)

• Initial scepticism against the field has decreased

• Try your own ideas, good methods need not build upon the
existing ones
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Thank you for your attention
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