Dominik Janzing

Max Planck Institute for Intelligent Systems
Tiibingen, Germany

18.-22. August 2014

MAX-PLANCK-GESELLSCHAFT



Outline

® why the relation between statistics and causality is tricky

® causal inference using conditional independences
(statistical and general)

© causal inference using other properties of joint
distributions

O causal inference in time series, quantifying causal
strength

©® why causal problems matter for prediction



Part 3: Why causality matters for prediction

Typical scenarios of machine learning
supervised learning, unsupervised learning, semi-supervised
learning

Causality and semi-supervised learning

Some methods of machine learning
support vector machines, reproducing kernel Hilbert spaces

Prediction from many variables
Markov blanket

Kind of summary






Typical machine learning problems

read hand-written letters/digits (given as pixel vectors)

classify the topics of documents (i.e. in the internet)

predict the structure of proteins from their acid sequence

classify cell tissue into tumors and healthy tissue from gene
expression data



Scenario with i.i.d. data

Task: predict y from x after observing some samples i.i.d. drawn
from P(X,Y).

The variables may attain values in a high-dimensional space (e.g.
pixel vector in R?920 gene expression vector in R28:000)



e Regression: continuous label Y

e Classification: discrete label Y




Supervised, unsupervised and semi-supervised learning

e.g. Chapelle et al: Semi-supervised learning, MIT press, 2006

Learn to predict Y from X, given some observations. Which
observations are given?

e supervised learning:
some pairs (x1,¥1),-- -, (Xn, ¥n)

e unsupervised learning:
only unlabelled x-values xi, ..., xk

¢ semi-supervised learning (SSL):
some pairs (x1,¥1), ..., (Xn, ¥n) and some unlabelled x-values
Xn+1s - -5 Xntk
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some points are labeled:

then we believe even more that the clusters correspond to different
labels:

unlabeled points tell us position and angle of the hyperplane
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source: http://en.wikipedia.org/wiki/Semi-supervised_learning

Here, the shape of the clusters tells us something about the shape
of the classifier.
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Semi-supervised regression

e Given: multi-dimensional X and real-valued Y
e Task: infer function f such that y =~ f(x)

¢ Observation: x-values essentially form a lower dimensional
manifold of a higher dimensional space
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Semi-supervised smoothness assumption

e Assumption: the map x — f(x) changes smoothly along the
manifold
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e Hence: the green and the yellow pojnts have the same
distance to the blue one, the green one is more likely to have
a similar y

e semi-supervised regression tries to find functions that fit the
labeled data while changing smoothly along the manifold
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Motivation for semi-supervised learning

e often it's expensive to get labeled data

e while unlabeled ones are cheap

Examples:

o classify text w.r.t. its topic: labeling needs to be done by

humans. Unlabeled documents are ubiquitous (e.g. in the
internet)

e object recognition on images

13



14



SSL in Causal and Anti-Causal settings

The task is to predict Y from X

o 0 o 0

causal setting: predict effect from cause anticausal setting: predict cause from effect
e.g., predict splice sites from DNA sequence e.g, breast tumor classification,
image segmentation

Schélkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

o 0 o 0

causal setting: predict effect from cause anticausal setting: predict cause from effect
e.g., predict splice sites from DNA sequence e.g, breast tumor classification,
image segmentation

SSL pointless because P(X) SSL can help because P(X) and P(Y|X)
contains no information about P(Y'|X) may contain information about each other

Schélkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Known SSL assumptions link P(X) to P(Y|X)

e SSL smoothness assumption: the function x — E[Y|x] should
be smooth in regions where p(x) is large.

o Cluster assumption: points lying in the same cluster are likely
to have the same Y.

e low density separation: The decision boundary should lie in a
region where p(x) is small.

The above assumptions can indeed be viewed as linking
properties of P(X) to properties of P(Y|X).
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Consider classification in causal direction

e Assume X is the cause with some distribution P(X):

e Let Y be binary and P(Y|X) be some deterministic rule, e.g.,
a separating hyperplane. Assume ‘nature chooses’ it
independently of P(X):
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why should the shape of the line describing P(Y|X) care about the
shape of P(X)?

19



We said: close points should have similar values f(x) if they have a
short connection along the manifold
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Can be justified if Y — X

Let Y and X take values in R and R?, respectively and

X=(ga(Y),&(Y))+U,

where gi, g» are continuous functions and U is a small noise vector.

if y is close to y’ then x, x’ are close along the manifold

(isolines could be like the red lines)
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Not justified for X — Y

Choose a function f : R> — R independent of P(X)

Then the isolines of f are nor related to the manifold on which the
x-values lie
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Does SSL only work in anticausal direction?

Meta-study:
e we searched the literature for empirical results on SSL with
real data

e we decided (after several discussions) whether a data pair is
causal or anticausal or unclear
(here strongly confounded pairs were also considered
anticausal)

e it turned out that none of the sucessful cases was causal

Scholkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Table 1. C: £ datasets of Section 5 (Semi-supervised ticausal/Confounded, Causal or Unclear
Category _Dataset "Reason of categor
l2241¢ | The class causes the 241 features.
Anticausal/ (22414 The class (binary) and the features are confounded by a variable with 4 states
[Digitt —[The positive or negative angle and the features are confounded by the variable of contimious angle. |
(Confounded 75 The class and the features are confounded by the 10-state variable of all digits.
co The six-state class and the features are confounded by the 24-state variable of all objects.
(Causal SecStr The id it
[Unclear  [BCT, Text Unclear which s the cause and which the effect.

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Semi-supervised classification: 8 benchmark datasets

Table 1. Categorization of eight benchmark datasets of Section 5 (Semi-supervised classification) as Anticausal/Confounded. Causal or Unclear

Category [Dataset
24lc

Reason of categorization
The class causes the 241 features,

Antieanal/ 2414

The class (binary) and the features are confounded by a variable with 4 states.

Digitl
Confounded (;¢pg

The positive

d the fearn

by the variable of conti 1

The class and the features are confounded by the 10-state variable of all digits.

cor

The six-state class and the features are confounded by the 24-state variable of all objects.

Causal [SeeStr
Unclear  |BCL Text

The amino acid is the cause of the secondary structure.
Unclear which is the cause and which the effect.

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Comparison of 11 SSL methods with the base classifiers 1-NN and SVM (star).

® In the causal case (red) the star is below the other points, i.e., SSL
performed worse than methods without SSL

® |n the other cases the star is often above the other points, SSL helped.
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Semi-supervised classification: 26 UCI datasets

Table 2. C: of 26 UCI datasets of Section 5 1p d ion) as Anticausal/Confounded, Causal or Unclear
Category | Dataset Reason of categorization
o The class of the fumor (benign or malignant) causes some of the features of the tumor (e.z..
reast-w N
thickness, size. shape etc.).
Whether or not a person has diabetes affects some of the features (e.g.. glucose concentration. blood pressure).
diabetes
but also is an effect of some others (e.g. age, number of times pregnant).
- The class (die or survive) and many of the features (e.¢., atigue, anorexia, liver big) are confounded by the
Ihepatitis i~
presence or absence of hepatitis. Some of the features. however, may also cause death.
is The size of the plant is an effect of the category it belongs to,
Cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g.. wage.
iincrease, number of working hours per week, number of paid vacation days, employer’s help during employee ’s
long
fabor term disability). Moreover, the features and the class may be confounded by elements of the character of the
employer
|Anticausal/ /and the employee (e.¢.. abilty to cooperate).
. Jeter The class (letter) is a cause of the produced image of the letter.
The attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
mushroom
taxonomy of the mushroom (23 species)
[segment The class of the image is the cause of the features of the image.
[sonar The class (Mine or Rock) causes the sonar signals.
[vehicle The class of the vehicle causes the features of ts silhouette.
This dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g.. having handicapped
iinfants or being part of religious groups in school can cause one’s vote, being democrat or republican can
vote causally
iinfluence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class
Crime and the class may be confounded, c.g., by the environment in which one grew up.
[vowel The class (vowel) causes the features.
waveform-5000 The class of the wave causes its attributes.
|balance-scale The features (weight and distance) cause the class.
Causal  fla-vskp The board-description causally influences whether white will win
splice The DNA sequence causes the splice sites.
breast-cancer. colic, colic.ORIG,
e : I some of these datasets, it is nclear whether the class label has been generated or defined based on the features
(Unelear - Jeredi-, creditg. hear-e. Beart-h. ¢ Tonospere, Credit Approval Sick)
Iheart-statlog. ionosphere, sick pete. PP
[Y. Guo et al., 2006] An extensive empirical study on semi-supervised learning.
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Semi-supervised classification: 26 UCI datasets
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Comparison of a SSL method with 6 corresponding non-SSL-based
classifiers.

e all red points are below or on the zero line, i.e., SSL performed
worse or equal than all the non-SSL-based methods

e blue and green points are sometime above the line, i.e., SSL helped.



to understand how SSL works...
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Binary classification

Examples:
e distinguish between 0 and 1 from given pixel vectors in hand
written digits
e distinguish between healthy cells and tumor cells given the
vector of gene expression levels

e given: some training examples (x1,y1),- - -, (Xn, ¥n) with
xj € RF and y; € {1, +1} (two classes)

e goal: find a function f that separates the two classes

e assumption: there is a linear classifier, i.e., an affine f such
that f(x;) > 0 if and only y; = +1

28



see also Scholkopf & Smola: Learning with kernels
choose the hyperplane that maximizes the margin:
find w € R and b € R that minimize ||w||? subject to

yi({w,x;) +b) >1 Vj=1,...,n

29



Support vectors

The support vectors are those x; that lie on the boundary of the
margin:

4 support vectors

observations:
e points other than support vectors are irrelevant for the
optimization

e the optimal w lies in the span of the support vectors

30



Often there is no hyperplane that classifies all points correctly:

error terms
(slack variables)

maximize margin while avoiding too large error terms
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How can we include unlabelled points?

32



see e.g. Joachims: Transductive support vector machines,

2006

ne\{v maximum margin hyperplane

maximize the margin using also the unlabelled points

(yields computationally hard optimization problem)
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Non-linear classification

here we need a non-linear function f for classification

In other words: find a function f for which f(x;) > 0 if y; = +1
and f(x;) < 0if y; = —1.
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Non-linear classification via feature maps

e define a map ¢ that maps x to non-linear functions of x:

fi(x)
fa(x)

e in this high-dimensional space H, a non-linear function may
turn into a linear one
e example: let x = (x1,x2) € R? and define

(1)

Then the circle x2 + x3 = 1 is given by the linear equation

d1(x) + d2(x) =1

35



‘Powerful’ feature maps

e we don't need to design a different feature map for every
problem

(for instance one that already knows the classifier)

e it will turn out that there are feature maps that are so
powerful that they can always be used

e idea: choose a map that contains an infinite set of functions,
e.g.
X
X2
3
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The kernel trick: we don't need ¢ itself...

Define the function
k(x,x") := (¢(x), (X)) .

e recall optimization problem:
minimize ||w||? subject to

yi((w,xj) +b)>1 Vj=1,....n

e recall that the optimal w can be written as
w = Z ajp(x;)
J

with some appropriate a
e to classify a new point x we only need to compute

3 ai(e(x), 6(x)) = Y ajk(x;,%)
J

J
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General remarks

e Many other machine learning algorithms also rely on inner
products only

e Then it is sufficient to know the ‘kernel" k instead of knowing
¢ explicitly

e k can be rather simple functions even for complex ¢.
Example: for

we have

38



Turning around the idea: define a vector space via the kernel.

Question:
Given a function
(x, x") = k(x,x),

under which condsitions is there a map ¢ such that

k(x,x") = (¢(x), 6(x')) ?
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Positive definite functions

Definition

A function k: X x X — R is called a positive definite kernel if for
all k € N and any xi, ..., xx, the matrix k(x;, x;) is positive
definite, i.e.,

Zcicjk(xiaxj) Z 07
P

for all vectors ¢ € RX.

Idea: positive definite functions are like positive definite matrices
with continuous index x

40



Let H be a real-valued vector space with inner product and and
¢: X — H be a map then

k(xi, xj) = (&(xi), p(x5))
is a positive definite kernel

Proof:

> cigs{(x),0(9))

= <Z c;¢(x;),ZCj¢(>9)> >0.

J

a1



Terminology: Hilbert spaces

e (possibly infinite-dimensional) vector space H

e endowed with an inner product

() @+ HxH—=R
() @ HxH—=C

e complete w.r.t. inner product norm, i.e., every Cauchy
sequence in H has a limit in H

Examples: C",R", L?(R), ¢?(N)

42



Defining Hilbert spaces via kernels

Theorem (Proposition 2.14 in Schélkopf & Smola, 2002)

Let X be a topological space and k : X x X — R be a continuous
positive definite kernel, then there exists a Hilbert space H and a
continuous map ¢ : X — H such that for all x,x' € X, we have

k(x,x') = (¢(x), p(x)) -

Hence: feature maps ¢ define kernels and vice versa
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e Gauss kernel: k: R" x R" - R

/
—[lx—x"||?

k(x,x') :=e 20
e polynomial kernel:
k(x,x') = (x,x')9
¢ inhomogeneous polynomial kernel:

k(x,x') = ((x,x) 4+ 1)¢



Reproducing kernel Hilbert space (RKHS)

How to get H from k:

o Every x defines a function £, : X — R via
(X)) = k(x,x).
e Define an inner product by
(Fe, B = k(x,X).

o Let H be the smallest Hilbert space containing all these
functions (fy)xex with the above inner product
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Gauss kernel is powerful

Define

112
—lx=x|

k(x,x') :=e 22 |
then there is a sense in which every continuous function can be
approximated by elements in H

Therefore, support vector machine with the Gaussian kernels are
able to find curved separating hyperplanes:
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Transductive SVM with Gauss kernels is able to find curved
separating hyperplanes based on the pattern of the unlabeled
points:
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Applications of SSL

e.g. Nigam et al: Semi-supervised text classification using EM, 2006

Text classification

e task: assign a topic y to a document x in the internet

e given: a few labelled documents (x1,y1), ..., (Xn, ¥n)
(expensive, done by humans), and a huge number of
unlabelled examples Xp41, ..., Xntk

¢ idea: different topics correspond to clusters in
high-dimensional space

(x vector of word counts, i.e., x € N¢ where d is the size of
the vocabulary)
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Health Insurance company asks a costumer before giving a
contract:

e age
e job
e hobbies

e address

to determine the risk of getting sick.

It does not matter whether these features are causal or not -
properties that correlate with the risk are useful regardless of they
are causes!
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Markov blanket (set of relevant variables)

given: causal DAG with nodes Xi,..., X,
task: predict X; from all the other variables

obvious solution: best prediction given by
p(X]’X].) LRI 7)<jf]_g)<j+]_, P ,Xn) .

goal: remove irrelevant nodes

question: what's the smallest set of variables S such that
Xi L Xs|Xz\ X;?

answer: Markov blanket, i.e., the parents and the children of
Xj, and the other parents of the latter (if we assume
faithfulness)
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Proof that Markov blanket is the smallest set

e Let M(j) be the Markov blanket of X;. Then
Xi L Xy Xpigy \ Xi » (1)

can be checked via d-separation

e every set S satisfying (1) contains M(j):
¢ no set can d-separate X; from its parents or children.
Therefore they are contained in S
¢ conditioning on the children of X; unblocks the path to the
parents of the children, no matter which variables we condition
on
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Markov blanket peari10ss

¢ Definition via causal terminology:
consists of parents, children and further parents of the children

¢ Definition via predictive relevance:
minimal set of variables that render all others irrelevant

Two perspectives:

e Causal structure tells us which variables are irrelevant because
they are conditionally independent

e Conditional independences tell us causal structure

Argument for causality seems circular!
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Predicting from causes is more robust

P(V|C) predicts V from its cause
(‘causal prediction’)

P(V|E) predicts V from its effect
(‘anticausal prediction’)

/
\

m«—— < <« 0

e P(V|E) changes when background condition B changes
because V L B|E

e P(V]|C) remains constant (‘covariate shift’) since V 1L B|C.

Schélkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij ICML 2012
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Two types of asymmetries between cause and effect

¢ Independence based assumption: P(C) and P(E|C)
contain no information about each other because ‘nature
chooses them independently’
e no SSL in causal direction
e P(C) ansd P(E|C) are algorithmically independent
e p(C) is not particualrly large in regions where f has large slope
(1GCI)

¢ Occam’s Razor assumption: Decomposition of P(C, E) into
P(C)P(E|C) tends to be simpler than decomposition into
P(E)P(CIE)
e P(E|C) may be of some simple type, e.g. non-linear additive
noise, while P(C|E) isn't
e some Bayesian method not mentioned
* K(P(C))+ K(P(E|C)) < K(P(E)) + K(P(C|E))

56



Relating the two types via a toy model

choose P(C) randomly from some finite set P;(C) with
i=1,...,n

choose P(E|C) randomly from some finite set P;(E|C) with
j=1...,n

then P;(C)P;(E|C) defines n? different distributions P;(C, E)

generically, this yields n? different distributions P;(E) and
P;(CIE)

hence, the backwards conditionals P(E) and P(C|E) run over
a larger set
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find appropriate ways to compare complexities of P(X), P(Y|X) to
P(Y)P(X]Y)
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Humans intuition about anticausal conditionals P(C|E) can be
pretty bad:

e Consider a random walk on Z

e Let X; be the position at time t

o Let p(Xet1|Xe) =1/2 for [Xey1 — Xe| =1
o Try to infer p(X¢| Xet1)
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Psychology

Humans intuition about anticausal conditionals P(C|E) can be
pretty bad:

e Consider a random walk on Z

o Let X; be the position at time t

o Let p(Xet1|Xe) =1/2 for [ Xer1 — Xe| =1
e Try to infer p(X¢|Xe+1)

e Many people think it would also be symmetric, i.e., given
Xt41, the two possibilities X; = X:11 £ 1 would be equally
likely

We are used to think in terms of causal conditionals, because they
define the mechanisms
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State of the art and outlook

o Asymmetries of cause and effect do exist (at least in the sense
that decision rate above chance level is possible)

e Initial scepticism against the field has decreased

e Try your own ideas, good methods need not build upon the
existing ones
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