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Outline

1 why the relation between statistics and causality is tricky

2 causal inference using conditional independences
(statistical and general)

3 causal inference using other properties of joint
distributions

4 causal inference in time series, quantifying causal
strength

5 why causal problems matter for prediction
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Part 1, continued: why the relation between statistics and
causality is tricky

(remaining part on equivalence of Markov conditions)
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Factorization ⇒ functional model

Generate each p(Xj |PAj) in

p(X1, . . . ,Xn) =
∏n

j=1
p(Xj |PAj)

by a deterministic function and a noise variable.

• Idea: “encode” Xj |paj (for all values paj) into the noise Uj ,
and pick out the right one depending on paj .

• formally, Uj is a map satisfying

paj 7→ Xj |paj

• define structural equation

fj(paj ,Uj) := Uj(paj) = Xj |paj

• special case easier to understand: if PAj only takes d values,
Uj is an d-dimensional random vector, and the structural
equation picks out a component of the vector (see next slide)
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Simple case

Goal: generate P(Y |X ) via structural equation

Y = f (X ,E ) with E ⊥⊥ X

• let X attain values in X = {x1, . . . , xk}
• let Y attain values in Y
• let E = (E1, . . . ,Ek) be vector valued, each Ej attaining

values in Y
• let Ej have distribution P(Y |xj)
• define f (xj ,E ) := Ej

• note: joint distribution of E1, . . . ,Ek not relevant (ambiguity
of noise distribution), only the marginals P(Ej) matter
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Quantitative causal statements
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Pearl’s do calculus

• Motivation: goal of causality is to infer the effect of
interventions

• distribution of Y given that X is set to x :

p(Y |do(X = x)) or p(Y |do(x))

• don’t confuse with p(Y |x)

• can be computed from p and G , but not from p alone
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Computing p(X1, . . . ,Xn|do(xi))

from p(X1, . . . ,Xn) and G

• Start with causal factorization

p(X1, . . . ,Xn) =
n∏

j=1

p(Xj |PAj)

• Replace p(Xi |PAi ) with δXixi

p(X1, . . . ,Xn) =
∏
j 6=i

p(Xj |PAj)δXi ,xi .
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Computing p(Xk |do(xi))

• summation/integration over xi yields

p(X1, . . . ,Xi−1,Xi+1, . . . ,Xn|do(xi )) =
∏
j 6=i

p(Xj |PAj(xi )) ,

where PAj(xi ) is obtained by substituting xi into PAj .

• obtain p(Xk |do(xi )) by marginalization
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Examples for p(y |do(x)) = p(y |x)

X

Y Z

Z

X Y X Y

X causes Y and there is no common cause of X and Y
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Examples for p(y |do(x)) 6= p(y |x)

• p(Y |do(x)) = p(Y ) 6= p(Y |x)

X Y

• p(Y |do(x)) = p(Y ) 6= p(Y |x)

Z

X Y
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Example: controlling for confounding

X 6⊥⊥ Y partly due to the confounder and partly due to X → Y .

Z

X Y

Computing p(Y |do(x)) shows the part that is due to X causing Y
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Controlling for confounding by deriving p(Y |do(x))

• causal factorization

p(X ,Y ,Z ) = p(Z )p(X |Z )p(Y |X ,Z )

• replace p(X |Z ) with δX ,x

P(X ,Y ,Z |do(x)) = p(Z )δX ,xp(Y |X ,Z )

• marginalize

p(Y |do(x)) =
∑
z

p(z)p(Y |x , z)
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Identifiability problem see e.g. Pearl, Tian

• given the causal DAG G on X1, . . . ,Xn and two nodes Xk ,Xi

• which nodes apart from Xk ,Xi need to be observed to
compute p(Xi |do xi )?

see e.g. results on backdoor criterion and frontdoor criterion in
Pearl’s book “Causality”
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Formal treatment of causal influence

• for binary X ,Y we define the average causal effect by

ACE := p(Y = 1|do(X = 1))− p(Y = 1|do(X = 0)) .

(increase of probability of Y = 1 by setting X to 1)

• for real-valued Y and binary X one defines

ACE := E[Y |do(X = 1)]− E[Y |do(X = 0)]

(increase of expectation of Y by setting X to 1

• for real-valued X ,Y one also uses

ACE :=
d

dx
E[Y |do(X = x)]

(increase of expectation of Y by infinitesimal increase of X )
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Formal treatment of Simpson’s paradox

• p(y |do(x), z) = p(y |x , z) for this DAG.

• the drug helps males and females:

p(recovery |do(drug),male) > p(recovery |do(no drug),male)

p(recovery |do(drug), female) > p(recovery |do(no drug), female)

• the drug helps also on the average:

p(recovery |do(drug)) > p(recovery |do(no drug)) ,

because
p(y |do(x)) =

∑
z

p(y |x , z)p(z)
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Naive solution of the coffee paradox

• observe as many other variables as possible: smoking,
nutrition, sports, height, weight, race

• compare life expectancy of people for which all variables are
the same except for coffee consumption
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Correct solution of the coffee paradox

• Xi (daily coffee consumption) and Xj (length of ones life) are
part of a large causal DAG

• there is no arrow from Xj to Xi

• observed Xi 6⊥⊥ Xj can be due to directed paths from Xi to Xj

or due to paths from common causes to both Xi and Xj

• to asses whether Xi influences Xj we need to block all paths
from common causes to Xi
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What’s wrong with the naive solution

conditioning on all the other variables

• screens off indirect influence
(e.g. if coffee influences weight and weight influences life
expectancy)

• generates dependences via selection bias
(however, hard to imagine a common effect of coffee drinking
and life expectancy)

18



Part 2: causal inference using conditional independences

• why the Markov condition is not enough
additional postulate: causal faithfulness

• algorithms for causal inference

• causal inference from non-statistical observations
defining similarities of single objects
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Why the Markov condition is not enough
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Causal inference from observational data

Can we infer G from P(X1, . . . ,Xn)?

• MC only describes which sets of DAGs are consistent with P

• n! many DAGs are consistent with any distribution

X

Y Z

Z

X Y

Y

Z X

X

Z Y

Z

Y X

Y

X Z

• reasonable rules for prefering simple DAGs required
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Causal faithfulness Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

• Idea: generic choices of parameters yield faithful distributions

• Example: let X ⊥⊥ Y for the DAG

X

Y Z

• not faithful, direct and indirect influence compensate
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Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = UX

Y = αX + UY

Z = βX + γZ + UZ

with independent noise terms UX ,UY ,UZ

β + αγ = 0 ⇒ X ⊥⊥ Z
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Examples of unfaithful distributions (2)

binary causes with XOR as effect

• for p(X ), p(Y ) uniform: X ⊥⊥ Z , Y ⊥⊥ Z .
i.e., unfaithful (since X ,Z and Y ,Z are connected in the
graph).

• for p(X ), p(Y ) non-uniform: X 6⊥⊥ Z , Y 6⊥⊥ Z .
i.e., faithful

unfaithfulness considered unlikely because it only occures for
non-generic parameter values

24



Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl
Causal Markov condition + Causal faithfulness:

• accept only those DAGs G as causal hypotheses for which

(X ⊥⊥ Y |Z )G ⇔ (X ⊥⊥ Y |Z )p .

• identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independences)
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Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov
equivalent iff they have the same skeleton and the same
v -structures.

skeleton: corresponding undirected graph
v-structure: substructure X → Y ← Z with no edge between
X and Z
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Markov equivalent DAGs

X Z Y

X Z Y

X Z Y

same skeleton, no v -structure
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Markov equivalent DAGs

same skeleton, v structure at W
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Algorithms for causal inference

29



Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:

1 Construct skeleton

2 Find v-structures

3 direct further edges that follow from

• graph is acyclic
• all v-structures have been found in 2)
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Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set SXY
such that

(X ⊥⊥ Y |SXY )G .

Explanation: dependence that is due to indirect links can be
screened off by conditioning

X ⊥⊥ Y |{Z ,W } .

Faithfulness implies: edge X − Y exists iff there is a set SX ,Y

such that
X ⊥⊥ Y |SXY .

(SXY is called a Sepset for X ,Y )
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Efficient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1 remove all edges X − Y with X ⊥⊥ Y

2 remove all edges X − Y for which there is a neighbor Z 6= Y
of X with X ⊥⊥ Y |Z

3 remove all edges X − Y for which there are two neighbors
Z1,Z2 6= Y of X with X ⊥⊥ Y |Z1,Z2

4 ...
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Advantages

• many edges can be removed already for small Sepsets

• testing all sets SXY containing the adjacencies
of X is sufficient

• depending on sparseness, algorithm only requires
independence tests with small conditioning tests

• running time only polynomial in n if DAG has bounded degree
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Find v-structures

• given X − Z − Y with X and Y non-adjacent

• given SXY with X ⊥⊥ Y |SXY
a priori, there are 4 possible orientations:

X → Z → Y
X ← Z → Y
X ← Z ← Y

 Z ∈ SXY

X → Z ← Y Z 6∈ SXY

Orientation rule: create v-structure if Z 6∈ SXY
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Direct further edges (Rule 1)

(otherwise we get a new v -structure)
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Direct further edges (Rule 2)

(otherwise one gets a cycle)
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Direct further edges (Rule 3)

(could not be completed without creating a new v -structure)
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Conditional independence tests

• discrete case: contingency tables

• idea: for each z, compare relative frequencies of (x, y) with
product of relative frequency of x with relative frequency of y

• problem: if Z attains many different values, many pairs (x, y)
occur only once unless the sample size is huge

• multi-variate Gaussian case: covariance matrix
contains all information about conditional independences

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)
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Improvements

• CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

• FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

• for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh

39



Limitation of independence based approach:

• many DAGs impose the same set of independences

X Z Y

X Z Y

X Z Y

X ⊥⊥ Y |Z for all three cases (“Markov equivalent DAGs”)

• method useless if there are no conditional independences

• non-parametric conditional independence testing is hard

• ignores important information:
only uses yes/no decisions “conditionally dependent or not”
without accounting for the kind of dependences...
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Application: Brain Computer Interfaces

• Goal: Paralyzed subjects communicate by activating certain
brain regions

• Open problem: Performance of subjects varies strongly

• Hypothesis: Attention influenced by oscillations in the
γ-frequency band

• indeed, γ seems to influence the sensorimotor rhythm (SMR)
since conditional dependences support the DAG

c SMR γ

(Grosse-Wentrup, Schölkopf, Hill NeuroImage 2011)
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Take home messages

principles of independence based causal inference

• Markov equivalence class is the set of all DAGs that imply the
same set of conditional independences

• Markov condition and faithfulness allow for identifying the
Markov equivalence class of the true DAG

• algorithms start by first constructing undirected links
(uniquely determined by the Markov equivalence class)

• then part of the links are directed and some remain undirected

• the partially directed graph represents the Markov equivalence
class
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Next step: Dropping causal sufficiency

So far, we have always assumed that no pair of observed variables
have unobserved common causes
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Latent structures

Let O := {X1, . . . ,Xn} be observed and L := (L1, . . . , Lk) be
latent variables

latent variableslatent variables

observed variables

Then a latent structure is a DAG G on O ∪ L.
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We will now see that...

• causal inference is also possible without causal sufficiency

• for given set O, there is an infinity of latent structures

• causal inference then seems to search over an infinity of
structures

• nevertheless, inferring causal relations among observed
variables requires searching over finitely many structures only
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Representing latent structures with MAGs

maximal ancestral graphs:
graph containing 3 types of edges:

X → Y X ← Y X ↔ Y

semantics:

• X → Y means that there is a directed path from X to Y in G
for which each observable non-endpoint node is a collider and
an ancestor of X or Y
(that is, the influence of X and Y cannot screened off by
conditioning)

• X ↔ Y means that there is a confounder, i.e., a node L ∈ L
having directed paths to X and Y
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Idea of latent model reconstruction

• construction of skeleton:
remains the same: X and Y are adjacent iff there is no set
SXY with

X ⊥⊥ Y |SXY
• construction of v-structures:

orient X − Z − Y to X− > Z < −Y whenever Z 6∈ SXY
(note: whether there are arrowheads at X and Y is left often)

• construct definite arrows
some independence patters tell us for some edges which of the
3 types of links is present
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Example: recognizing Y -structures

O = {X ,Y ,Z ,W } with

X ⊥⊥ Y

XY ⊥⊥ Z |W

as generating set of the independences
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Example: recognizing Y -structures

Step 1: construct the skeleton

X

Z

W

Y

• remove X − Y because X ⊥⊥ Y

• remove X −W because X ⊥⊥W |Z
• remove Y −W because Y ⊥⊥W |Z
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Example: recognizing Y -structures

identifying v -structure

X

Z

W

Y

• add arrowheads to get a collider at Z because Z 6∈ SXY

• leave it open whether there are arrowheads at the other end of
the edges
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Example: recognizing Y -structures

orient further edges such that no additional v -structures are
created

X

Z

W

Y

• there cannot be an arrowhead at Z because Z ∈ SX ,W

• there must be an arrowhead at W because every edge has at
least one arrowhead

conclusion: Z influences W !
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Hence...

• faithfulness and Markov condition on O ∪ L sometimes imply
causal conclusions for O

• one can prove causal influence without assuming causal
sufficiency
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Causal inference from single observations

• drop the i.i.d. assumption → radical approach: causal
inference without probabilities

• this approach will help to justify new statistical causal
inference rules
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forget about statistics for a moment...

– how do we come to causal conclusions in every-day life?
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these 2 objects are similar...

– why are they so similar?
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Conclusion: common history

similarities require an explanation
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what kind of similarities require an explanation?

here we would not assume that anyone has copied the design...
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..the pattern is too simple

• similarities require an explanation only if the pattern is
sufficiently complex
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consider a binary sequence

Experiment:
2 persons are instructed to write down a string with 1000 digits

Result:
Both write 1100100100001111110110101010001...
(all 1000 digits coincide)
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the naive statistician concludes

“There must be an agreement between the subjects”

correlation coefficient 1 (between digits) is highly significant for
sample size 1000 !

• reject statistical independence
• infer the existence of a causal relation
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another mathematician recognizes...

11.0010010000111111011010101001... = π

• subjects may have come up with this number independently
because it follows from a simple law

• superficially strong similarities are not necessarily significant if
the pattern is too simple
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How do we measure simplicity versus complexity of
patterns / objects?
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Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)

of a binary string x

• K(x) = length of the shortest program with output x (on a
Turing machine)

• interpretation: number of bits required to describe the rule
that generates x

neglect string-independent additive constants; use
+
= instead

of =

• strings x , y with low K (x), K (y) cannot have much in
common

• K (x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity

• K (y |x): length of the shortest program that generates y from
the input x .

• number of bits required for describing y if x is given as
backgroun information

• K (y |x∗) length of the shortest program that generates y from
x∗, i.e., the shortest compression x .

• subtle difference: x can be generated from x∗ but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information
(Chaitin)

Information of x about y

• I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗) +

=
K (y)− K (y |x∗)

• Interpretation: number of bits saved when compressing x , y
jointly rather than compressing them independently
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Analogy to statistics:

• replace strings x , y (=objects) with random variables X ,Y
having the joint distribution P(X ,Y )

• replace Kolmogorov complexity with Shannon entropy

• replace algorithmic mutual information I (x : y) with statistical
mutual information I (X ;Y )
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Causal Principle (Janzing & Schölkopf 2008)

Let x and y be strings that describe two
objects/observations in nature. Whenever I (x : y)� 0, there
is some kind of causal relation between x and y .

• causal relation is x → y , y → x , or x ← z → y

• analogy to Reichenbach’s principle of common cause:
whenever I (X : Y )� 0 for two variables X and Y there is a
causal relation of the form X → Y , Y → X , or X ← Z → Y .
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algorithmic mutual information: example

I(        :        ) = K(       )    

68



conditional algorithmic mutual information

• I (x : y |z) = K (x |z) + K (y |z)− K (x , y |z)

• Information that x and y have in common when z is already
given

• Formal analogy to statistical mutual information:

I (X : Y |Z ) = S(X |Z ) + S(Y |Z )− S(X ,Y |Z )

• Define conditional independence:

I (x : y |z) ≈ 0 :⇔ x ⊥⊥ y |z
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Postulate: Algorithmic Markov condition

(Janzing & Schölkopf), Causal inference using the algorithmic Markov condition, 2010

Given n observations x1, ..., xn (formalized as strings)
Given its direct causes paj , every xj is conditionally algorithmically
independent of its non-effects:

xj ⊥⊥ ndj |pa∗j
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Equivalence of algorithmic Markov conditions

For n strings x1, ..., xn the following conditions are equivalent

• Local Markov condition:

I (xj : ndj |pa∗j )
+
= 0

• Global Markov condition:
R d-separates S and T implies I (S : T |R∗) +

= 0

• Recursion formula for joint complexity

K (x1, ..., xn)
+
=

n∑
j=1

K (xj |pa∗j )

→ another analogy to statistical causal inference
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Take home messages

• we have developed a framework for causal inference from
individual observations

• it should be applicable to real world data where good
compression schemes are available

• we will later use it for justifying novel statistical causal
inference rules: select among causal DAGs within the same
Markov equivalence class
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Generalized PC

Steudel et al: Causal Markov condition for submodualr information measures

PC algorithm also works with generalized conditional independence
derived from information functions R other than Shannon entropy

Examples:

1 R := number of different words in a text

2 R := compression length (e.g. Lempel Ziv is approximately
submodular)

3 R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (different
versions of a paper abstract)
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Exercises

4 do-calculus:
Let X ,Y ,Z be binary and coupled by the deterministic
structural equations

Z = UZ

X = Z

Y = X ⊕ Z ⊕ UY ,

where ⊕ denotes the XOR, UY is a binary attaining 1 with
probability ε < 1/2 and UZ is a binary attaining 1 with
probability δ 6= 1/2

• Argue/show that X ⊥⊥ Y .
• Show formally that X has an influence on Y by proving that

p(Y |do(X = 1)) 6= p(Y |do(X = 0) .
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Exercises

5 Faithfulness:
Given the causal DAG X → Y → Z . Let Y be
deterministically depend on X , i.e., the structural equation for
Y reads

Y = f (X ) .

Show that the joint distribution of X ,Y ,Z is not faithful.
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Exercises

6 Markov equivalence:
give all DAGs with 3 nodes whose Markov equivalence class
consists of only one element.
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