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Causal Inference

Figure 1.2: Through a competition of experts, inverse causal mechanisms are learned as independent modules in
an image task. This results in generalisable and broadly applicable network modules, which can subsequently be
combined and applied to new domains.

In the terminology of a book we recently pub-
lished [2], the term causal inference comprises
both causal reasoning and causal discovery, two
somewhat inverse scenarios: While the former
employs causal modelds for inferring about the
expected observations (often, about their statis-
tical properties), the latter is concerned with in-
ferring causal models from empirical data. Both
parts crucially depend on assumptions on the sta-
tistical properties entailed by hypothetical causal
structures. During the past decade various as-
sumptions have been proposed and assayed that
go beyond traditional assumptions like the causal
Markov condition and causal faithfulness. This
has implications for both scenarios: it improves
identifiability of causal structure, and it also en-
tails additional statistical predictions if the causal
structure is known.

Traditional causal discovery assumes that the
units are connected by a causal directed acyclic
graph a priori (mostly as random variables). In
contrast, real-world observations are not neces-
sarily a priori structured into those units (e.g. ob-

jects in images). The task of identifying reason-
able units that admit causal models is challeng-
ing for both human and machine intelligence,
but it aligns with the general goal of modern
machine learning to learn meaningful represen-
tations for data, where ‘meaningful’ can for in-
stance mean interpretable, robust, or transfer-
able. The general idea that causal structure is
a concept that often remains invariant across
changing background conditions (first discussed
by Herb Simon, and discussed in detail in our
book) can be utilized for both causal reasoning
and causal discovery. Identifying causal units
will therefore be a third subsection below.

Causal reasoning Subject to sufficiently spe-
cific model assumptions (here: additive indepen-
dent noise), causal knowledge admits novel tech-
niques of noise removal such as our method of
half-sibling regression published in PNAS [102],
applied to astronomic data from NASA’s Kepler
space telescope [89].

Apart from entailing statistical properties for
a fixed distribution, causal models also suggest
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how distributions change across data sets. To this
end, one may assume, for instance, that struc-
tural equations remain constant across data sets
and only the noise distributions change [2, 93],
that some of the causal conditionals in a causal
Bayesian network change, while others remain
constant [30], or that they change independently
[181], which results in new approaches to do-
main adaptation [242].

Causal discovery The toy problem of telling
cause from effect in bivariate distributions,
which we have earlier shown to be insightful
also for more general causal inference problems,
has been further explored [153, 251]. The per-
formance of a broad variety of new approaches
has been extensively studied in a long JMLR pa-
per [101], suggesting that classification of cause
and effect is indeed possible above chance level.
New results for the multi-variable setting deal
with, for instance, the problem of learning struc-
tural equation models in the presence of selection
bias [239] and the idea of employing general-
ized score functions [145]. In [57], we introduce
a kernel-based statistical test for joint indepen-
dence of random variables which is a key compo-
nent of multi-variate additive noise based causal
inference.

Apart from progress on those ’classical’
causal inference problems the domain of causal
inference has been extended in several directions.
Causal discovery for rare events has been further
developed in terms of interacting Hawkes pro-
cesses [240]. To study causal signals in images,
the CVPR paper [197] infers whether the pres-
ence of an object on an image is the cause or
the effect of the presence of another one, using
additive noise based cause-effect inference.

In a study connecting principles of causal in-
ference and foundations of physics [86], we re-
late asymmetries between cause and effect to
asymmetries between past and future, deriving
the thermodynamic arrow of time from the ba-
sic assumption of (algorithmic) independence
of causal mechanisms. Within machine learning

and time series modeling, new causal inference
methods have revealed previously unknown as-
pects of the arrow of time [234].

Identifying causal units and causal learn-
ing Defining objects that are related by causal
models typically amounts to appropriate coarse-
graining of more detailed models of the world
(e.g., physical models). Subject to appropri-
ate conditions, causal models like structural
equation models can arise from coarse-graining
of ‘microscopic’ models including microscopic
structural equation models [185], ordinary dif-
ferential equations [156], temporally aggregated
time series [186], or temporal abstractions of
recurrent dynamical models [127]. Although ev-
ery causal models in economics, medicine, or
psychology uses variables that are abstractions
of more elementary concepts, it is challenging
to state general conditions under which coarse-
grained variables admit causal models with well-
defined interventions. Our work [185] provides
some sufficient conditions.

Theoretical work in [152] shows that the inde-
pendence of causal mechanisms can be formal-
ized via group symmetry. The plausibility of a
scene inferred from an image, for instance, can
be formally assessed by testing whether some
’contrast function’ attains values that are typical
among those reached by symmetry transforma-
tions. This way, statistical independence (with
permutations as corresponding symmetry group)
is just a special case of a more general notion of
independence.

In the context of a classical image recognition
task, our recent ICML paper [139] shows that
learning causal models that contain invariant
mechanisms helps in transferring information
across substantially different data sets (see fig-
ure). We plan to further pursue this direction,
with the goal of moving from statistical represen-
tation learning towards causal world represen-
tations that should be more robust and support
notions of intervention and planning.

More information: https://ei.is.mpg.de/project/causal-inference
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