Header logo is ei

ei Thumb sm bildschirmfoto 2017 12 01 um 13.15.17
Manuel Gomez Rodriguez (Project leader)
Alumni
ei no image
ei no image
ei Thumb sm img 0113 bs
no image
Jure Leskovec
Stanford University
no image
Le Song
Georgia Institute of Technology
13 results

2014


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

DOI Project Page [BibTex]


no image
Quantifying Information Overload in Social Media and its Impact on Social Contagions

Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.

In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


no image
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Shaping Social Activity by Incentivizing Users

Farajtabar, M., Du, N., Gomez Rodriguez, M., Valera, I., Zha, H., Song, L.

In Advances in Neural Information Processing Systems 27, (Editors: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, ND., and Weinberger, KQ.), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

Web link (url) Project Page [BibTex]

Web link (url) Project Page [BibTex]

2013


no image
Modeling Information Propagation with Survival Theory

Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.

In Proceedings of the 30th International Conference on Machine Learning, JMLR W&CP 28 (3), pages: 666-674, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)

Web Project Page [BibTex]

2013

Web Project Page [BibTex]


no image
Structure and Dynamics of Information Pathways in On-line Media

Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.

In 6th ACM International Conference on Web Search and Data Mining (WSDM), pages: 23-32, (Editors: S Leonardi, A Panconesi, P Ferragina, and A Gionis), ACM, WSDM, 2013 (inproceedings)

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Scalable Influence Estimation in Continuous-Time Diffusion Networks

Du, N., Song, L., Gomez Rodriguez, M., Zha, H.

In Advances in Neural Information Processing Systems 26, pages: 3147-3155, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF Project Page [BibTex]

PDF PDF Project Page [BibTex]

2012


no image
Inferring Networks of Diffusion and Influence

Gomez Rodriguez, M., Leskovec, J., Krause, A.

ACM Transactions on Knowledge Discovery from Data, 5(4:21), February 2012 (article)

Abstract
Information diffusion and virus propagation are fundamental processes taking place in networks. While it is often possible to directly observe when nodes become infected with a virus or publish the information, observing individual transmissions (who infects whom, or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and finds provably near-optimal networks. We demonstrate the effectiveness of our approach by tracing information diffusion in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news for the top 1,000 media sites and blogs tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.

Web DOI Project Page [BibTex]

2012

Web DOI Project Page [BibTex]


no image
Influence Maximization in Continuous Time Diffusion Networks

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning, pages: 313-320, (Editors: J, Langford and J, Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


no image
Submodular Inference of Diffusion Networks from Multiple Trees

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning , pages: 489-496, (Editors: J Langford, and J Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


no image
Bridging Offline and Online Social Graph Dynamics

Gomez Rodriguez, M., Rogati, M.

In 21st ACM Conference on Information and Knowledge Management, pages: 2447-2450, (Editors: Chen, X., Lebanon, G., Wang, H. and Zaki, M. J.), ACM, CIKM, 2012 (inproceedings)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]

2011


no image
Uncovering the Temporal Dynamics of Diffusion Networks

Gomez Rodriguez, M., Balduzzi, D., Schölkopf, B.

In Proceedings of the 28th International Conference on Machine Learning, pages: 561-568, (Editors: L. Getoor and T. Scheffer), Omnipress, Madison, WI, USA, ICML, July 2011 (inproceedings)

Abstract
Time plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.

PDF Web Project Page [BibTex]

2011

PDF Web Project Page [BibTex]

2010


no image
Inferring Networks of Diffusion and Influence

Gomez Rodriguez, M., Leskovec, J., Krause, A.

In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2010), pages: 1019-1028, (Editors: Rao, B. , B. Krishnapuram, A. Tomkins, Q. Yang), ACM Press, New York, NY, USA, 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), July 2010 (inproceedings)

Abstract
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably near-optimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.

PDF Web DOI Project Page [BibTex]

2010

PDF Web DOI Project Page [BibTex]