ei Thumb sm thumb felix a. wichmann
Felix A. Wichmann
Senior Research Scientist
ei Thumb sm img 0113 bs
14 results

2015


no image
Testing the role of luminance edges in White’s illusion with contour adaptation

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(11):1-16, August 2015 (article)

DOI Project Page [BibTex]

2015

DOI Project Page [BibTex]


no image
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(14):1-17, October 2015 (article)

DOI Project Page [BibTex]


no image
Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

Web PDF link (url) DOI Project Page [BibTex]

Web PDF link (url) DOI Project Page [BibTex]

2014


no image

2013


no image
How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?

Gerhard, H., Wichmann, F., Bethge, M.

PLoS Computational Biology, 9(1):e1002873, January 2013 (article)

Abstract
Several aspects of primate visual physiology have been identified as adaptations to local regularities of natural images. However, much less work has measured visual sensitivity to local natural image regularities. Most previous work focuses on global perception of large images and shows that observers are more sensitive to visual information when image properties resemble those of natural images. In this work we measure human sensitivity to local natural image regularities using stimuli generated by patch-based probabilistic natural image models that have been related to primate visual physiology. We find that human observers can learn to discriminate the statistical regularities of natural image patches from those represented by current natural image models after very few exposures and that discriminability depends on the degree of regularities captured by the model. The quick learning we observed suggests that the human visual system is biased for processing natural images, even at very fine spatial scales, and that it has a surprisingly large knowledge of the regularities in natural images, at least in comparison to the state-of-the-art statistical models of natural images.

DOI Project Page [BibTex]

2013

DOI Project Page [BibTex]


no image
A neural population model for visual pattern detection

Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.

Psychological Review, 120(3):472–496, 2013 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 134(1):447-463, 2013 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling fixation locations using spatial point processes

Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.

Journal of Vision, 13(12):1-34, 2013 (article)

Abstract
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
When luminance increment thresholds depend on apparent lightness

Maertens, M., Wichmann, F.

Journal of Vision, 13(6):1-11, 2013 (article)

DOI Project Page [BibTex]

2012


no image
A New Perceptual Bias Reveals Suboptimal Population Decoding of Sensory Responses

Putzeys, T., Bethge, M., Wichmann, F., Wagemans, J., Goris, R.

PLoS Computational Biology, 8(4):1-13, April 2012 (article)

Abstract
Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination task. We report a new perceptual bias suggesting that observers read out the likelihood representation with remarkably low precision when discriminating grating spatial frequencies. Using spectrally filtered noise, we induced an asymmetry in the likelihood function of spatial frequency. This manipulation mainly affects the likelihood of spatial frequencies that are irrelevant to the task at hand. Nevertheless, we find a significant shift in perceived grating frequency, indicating that observers evaluate likelihoods of a broad range of irrelevant frequencies and discard prior knowledge of stimulus alternatives when performing two-alternative discrimination.

Web DOI Project Page [BibTex]

2012

Web DOI Project Page [BibTex]


no image
Sparse regularized regression identifies behaviorally-relevant stimulus features from psychophysical data

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 131(5):3953-3969, May 2012 (article)

Abstract
As a prerequisite to quantitative psychophysical models of sensory processing it is necessary to learn to what extent decisions in behavioral tasks depend on specific stimulus features, the perceptual cues. Based on relative linear combination weights, this study demonstrates how stimulus-response data can be analyzed in this regard relying on an L1-regularized multiple logistic regression, a modern statistical procedure developed in machine learning. This method prevents complex models from over-fitting to noisy data. In addition, it enforces “sparse” solutions, a computational approximation to the postulate that a good model should contain the minimal set of predictors necessary to explain the data. In simulations, behavioral data from a classical auditory tone-in-noise detection task were generated. The proposed method is shown to precisely identify observer cues from a large set of covarying, interdependent stimulus features—a setting where standard correlational and regression methods fail. The proposed method succeeds for a wide range of signal-to-noise ratios and for deterministic as well as probabilistic observers. Furthermore, the detailed decision rules of the simulated observers were reconstructed from the estimated linear model weights allowing predictions of responses on the basis of individual stimuli.

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]

2010


no image
Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces

Macke, J., Wichmann, F.

Journal of Vision, 10(5:22):1-24, May 2010 (article)

Abstract
One major challenge in the sensory sciences is to identify the stimulus features on which sensory systems base their computations, and which are predictive of a behavioral decision: they are a prerequisite for computational models of perception. We describe a technique (decision images) for extracting predictive stimulus features using logistic regression. A decision image not only defines a region of interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face classification experiment. We show that decision images are able to predict human responses not only in terms of overall percent correct but also in terms of the probabilities with which individual faces are (mis-) classified by individual observers. We show that the most predictive dimension for gender categorization is neither aligned with the axis defined by the two class-means, nor with the first principal component of all faces-two hypotheses frequently entertained in the literature. Our method can be applied to a wide range of binary classification tasks in vision or other psychophysical contexts.

Web DOI Project Page [BibTex]

2009


no image
Does Cognitive Science Need Kernels?

Jäkel, F., Schölkopf, B., Wichmann, F.

Trends in Cognitive Sciences, 13(9):381-388, September 2009 (article)

Abstract
Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.

PDF Web DOI Project Page [BibTex]

2009

PDF Web DOI Project Page [BibTex]


no image
Center-surround patterns emerge as optimal predictors for human saccade targets

Kienzle, W., Franz, M., Schölkopf, B., Wichmann, F.

Journal of Vision, 9(5:7):1-15, May 2009 (article)

Abstract
The human visual system is foveated, that is, outside the central visual field resolution and acuity drop rapidly. Nonetheless much of a visual scene is perceived after only a few saccadic eye movements, suggesting an effective strategy for selecting saccade targets. It has been known for some time that local image structure at saccade targets influences the selection process. However, the question of what the most relevant visual features are is still under debate. Here we show that center-surround patterns emerge as the optimal solution for predicting saccade targets from their local image structure. The resulting model, a one-layer feed-forward network, is surprisingly simple compared to previously suggested models which assume much more complex computations such as multi-scale processing and multiple feature channels. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

PDF DOI Project Page [BibTex]