Header logo is ei

10 results

2012


no image
Image denoising: Can plain Neural Networks compete with BM3D?

Burger, H., Schuler, C., Harmeling, S.

In pages: 2392 - 2399, 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

Abstract
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.

PDF Web DOI Project Page [BibTex]

2012

PDF Web DOI Project Page [BibTex]


no image
Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database

Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.

In Computer Vision - ECCV 2012, LNCS Vol. 7578, pages: 27-40, (Editors: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid), Springer, Berlin, Germany, 12th European Conference on Computer Vision, ECCV , 2012 (inproceedings)

Abstract
Motion blur due to camera shake is one of the predominant sources of degradation in handheld photography. Single image blind deconvolution (BD) or motion deblurring aims at restoring a sharp latent image from the blurred recorded picture without knowing the camera motion that took place during the exposure. BD is a long-standing problem, but has attracted much attention recently, cumulating in several algorithms able to restore photos degraded by real camera motion in high quality. In this paper, we present a benchmark dataset for motion deblurring that allows quantitative performance evaluation and comparison of recent approaches featuring non-uniform blur models. To this end, we record and analyse real camera motion, which is played back on a robot platform such that we can record a sequence of sharp images sampling the six dimensional camera motion trajectory. The goal of deblurring is to recover one of these sharp images, and our dataset contains all information to assess how closely various algorithms approximate that goal. In a comprehensive comparison, we evaluate state-of-the-art single image BD algorithms incorporating uniform and non-uniform blur models.

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Blind Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In Computer Vision - ECCV 2012, LNCS Vol. 7574, pages: 187-200, (Editors: A Fitzgibbon, S Lazebnik, P Perona, Y Sato, and C Schmid), Springer, Berlin, Germany, 12th IEEE European Conference on Computer Vision, ECCV, 2012 (inproceedings)

Abstract
Camera lenses are a critical component of optical imaging systems, and lens imperfections compromise image quality. While traditionally, sophisticated lens design and quality control aim at limiting optical aberrations, recent works [1,2,3] promote the correction of optical flaws by computational means. These approaches rely on elaborate measurement procedures to characterize an optical system, and perform image correction by non-blind deconvolution. In this paper, we present a method that utilizes physically plausible assumptions to estimate non-stationary lens aberrations blindly, and thus can correct images without knowledge of specifics of camera and lens. The blur estimation features a novel preconditioning step that enables fast deconvolution. We obtain results that are competitive with state-of-the-art non-blind approaches.

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]

2011


no image
Improving Denoising Algorithms via a Multi-scale Meta-procedure

Burger, H., Harmeling, S.

In Pattern Recognition, pages: 206-215, (Editors: Mester, R. , M. Felsberg), Springer, Berlin, Germany, 33rd DAGM Symposium, September 2011 (inproceedings)

Abstract
Many state-of-the-art denoising algorithms focus on recovering high-frequency details in noisy images. However, images corrupted by large amounts of noise are also degraded in the lower frequencies. Thus properly handling all frequency bands allows us to better denoise in such regimes. To improve existing denoising algorithms we propose a meta-procedure that applies existing denoising algorithms across different scales and combines the resulting images into a single denoised image. With a comprehensive evaluation we show that the performance of many state-of-the-art denoising algorithms can be improved.

PDF DOI Project Page [BibTex]

2011

PDF DOI Project Page [BibTex]


no image
Removing noise from astronomical images using a pixel-specific noise model

Burger, H., Schölkopf, B., Harmeling, S.

In pages: 8, (Editors: H Lensch and SL Narasimhan and ME Testorf), IEEE, Piscataway, NJ, USA, IEEE International Conference on Computational Photography (ICCP), April 2011 (inproceedings)

Abstract
For digital photographs of astronomical objects, where exposure times are usually long and ISO settings high, the so-called dark-current is a significant source of noise. Dark-current refers to thermally generated electrons and is therefore present even in the absence of light. This paper presents a novel approach for denoising astronomical images that have been corrupted by dark-current noise. Our method relies on a probabilistic description of the dark-current of each pixel of a given camera. The noise model is then combined with an image prior which is adapted to astronomical images. In a laboratory environment, we use a black and white CCD camera containing a cooling unit and show that our method is superior to existing methods in terms of root mean squared error. Furthermore, we show that our method is practically relevant by providing visually more appealing results on astronomical photographs taken with a single lens reflex CMOS camera.

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Online Multi-frame Blind Deconvolution with Super-resolution and Saturation Correction

Hirsch, M., Harmeling, S., Sra, S., Schölkopf, B.

Astronomy & Astrophysics, 531(A9):11, July 2011 (article)

Abstract
Astronomical images taken by ground-based telescopes suffer degradation due to atmospheric turbulence. This degradation can be tackled by costly hardware-based approaches such as adaptive optics, or by sophisticated software-based methods such as lucky imaging, speckle imaging, or multi-frame deconvolution. Software-based methods process a sequence of images to reconstruct a deblurred high-quality image. However, existing approaches are limited in one or several aspects: (i) they process all images in batch mode, which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved image, even though an image sequence often contains enough information; (iii) they are unable to deal with saturated pixels; and (iv) they are usually non-blind, i.e., they assume the blur kernels to be known. In this paper we present a new method for multi-frame deconvolution called online blind deconvolution (OBD) that overcomes all these limitations simultaneously. Encouraging results on simulated and real astronomical images demonstrate that OBD yields deblurred images of comparable and often better quality than existing approaches.

PDF DOI Project Page [BibTex]


no image
Fast removal of non-uniform camera shake

Hirsch, M., Schuler, C., Harmeling, S., Schölkopf, B.

In pages: 463-470 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Camera shake leads to non-uniform image blurs. State-of-the-art methods for removing camera shake model the blur as a linear combination of homographically transformed versions of the true image. While this is conceptually interesting, the resulting algorithms are computationally demanding. In this paper we develop a forward model based on the efficient filter flow framework, incorporating the particularities of camera shake, and show how an efficient algorithm for blur removal can be obtained. Comprehensive comparisons on a number of real-world blurry images show that our approach is not only substantially faster, but it also leads to better deblurring results.

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]


no image
Non-stationary correction of optical aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In pages: 659-666 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]

2010


no image
Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake

Harmeling, S., Hirsch, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 829-837, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Modelling camera shake as a space-invariant convolution simplifies the problem of removing camera shake, but often insufficiently models actual motion blur such as those due to camera rotation and movements outside the sensor plane or when objects in the scene have different distances to the camera. In an effort to address these limitations, (i) we introduce a taxonomy of camera shakes, (ii) we build on a recently introduced framework for space-variant filtering by Hirsch et al. and a fast algorithm for single image blind deconvolution for space-invariant filters by Cho and Lee to construct a method for blind deconvolution in the case of space-variant blur, and (iii), we present an experimental setup for evaluation that allows us to take images with real camera shake while at the same time recording the spacevariant point spread function corresponding to that blur. Finally, we demonstrate that our method is able to deblur images degraded by spatially-varying blur originating from real camera shake, even without using additionally motion sensor information.

PDF Web Project Page [BibTex]

2010

PDF Web Project Page [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, pages: 607-614, IEEE, Piscataway, NJ, USA, CVPR, June 2010 (inproceedings)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]