ei Thumb sm thumb moritz grosse wentrup
Moritz Grosse-Wentrup (Group leader)
Research Group Leader
ei Thumb sm webselfie
ei Thumb sm thumb sebastian weichwald
Sebastian Weichwald
Ph.D. Student
ei no image
Bernd Battes
Research Technician
ei Thumb sm 11075025 10203276300983072 2958891385025842281 o
Matthias Hohmann
Ph.D. Student
ei Thumb sm mpgprofile
Vinay Jayaram
Ph.D. Student
ei Thumb sm thumb tatiana fomina
41 results

2016


Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

PDF DOI Project Page [BibTex]

2016

PDF DOI Project Page [BibTex]

2015


Toward Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

[BibTex]

2015

[BibTex]


Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

DOI [BibTex]

DOI [BibTex]


A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 6979-6982, EMBC, 2015 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

DOI [BibTex]

DOI [BibTex]

2014


Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

PDF DOI Project Page [BibTex]

2014


A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

Web DOI Project Page [BibTex]


Causal and Anti-Causal Learning in Pattern Recognition for Neuroimaging

Weichwald, S., Schölkopf, B., Ball, T., Grosse-Wentrup, M.

In 4th International Workshop on Pattern Recognition in Neuroimaging (PRNI), IEEE , PRNI, 2014 (inproceedings)

PDF Arxiv DOI [BibTex]

PDF Arxiv DOI [BibTex]


Decoding Index Finger Position from EEG Using Random Forests

Weichwald, S., Meyer, T., Schölkopf, B., Ball, T., Grosse-Wentrup, M.

In 4th International Workshop on Cognitive Information Processing (CIP), IEEE, CIP, 2014 (inproceedings)

PDF Arxiv DOI [BibTex]

PDF Arxiv DOI [BibTex]


Towards Neurofeedback Training of Associative Brain Areas for Stroke Rehabilitation

Özdenizci, O., Meyer, T., Cetin, M., Grosse-Wentrup, M.

In Proceedings of the 6th International Brain-Computer Interface Conference, (Editors: G Müller-Putz and G Bauernfeind and C Brunner and D Steyrl and S Wriessnegger and R Scherer), 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]

2013


A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


How to Test the Quality of Reconstructed Sources in Independent Component Analysis (ICA) of EEG/MEG Data

Grosse-Wentrup, M., Harmeling, S., Zander, T., Hill, J., Schölkopf, B.

In Proceedings of the 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI), pages: 102-105, IEEE Xplore Digital Library, PRNI, 2013 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Quantifying causal influences

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.

Annals of Statistics, 41(5):2324-2358, 2013 (article)

Web Project Page [BibTex]


Towards neurofeedback for improving visual attention

Zander, T., Battes, B., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the Fifth International Brain-Computer Interface Meeting: Defining the Future, pages: Article ID: 086, (Editors: J.d.R. Millán, S. Gao, R. Müller-Putz, J.R. Wolpaw, and J.E. Huggins), Verlag der Technischen Universität Graz, 5th International Brain-Computer Interface Meeting, 2013, Article ID: 086 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]

2012


High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

2012

PDF [BibTex]


High gamma-power predicts performance in sensorimotor-rhythm brain-computer interfaces

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 9(4):046001, May 2012 (article)

Abstract
Subjects operating a brain–computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency γ-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this finding as empirical support for an influence of attentional networks on BCI performance via modulation of the sensorimotor rhythm.

Web DOI Project Page [BibTex]


A Brain-Robot Interface for Studying Motor Learning after Stroke

Meyer, T., Peters, J., Brötz, D., Zander, T., Schölkopf, B., Soekadar, S., Grosse-Wentrup, M.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4078 - 4083 , IEEE, Piscataway, NJ, USA, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Investigating the Neural Basis of Brain-Computer Interface (BCI)-based Stroke Rehabilitation

Meyer, T., Peters, J., Zander, T., Brötz, D., Soekadar, S., Schölkopf, B., Grosse-Wentrup, M.

In International Conference on NeuroRehabilitation (ICNR) , pages: 617-621, (Editors: JL Pons, D Torricelli, and M Pajaro), Springer, Berlin, Germany, ICNR, 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


An online brain–computer interface based on shifting attention to concurrent streams of auditory stimuli

Hill, N., Schölkopf, B.

Journal of Neural Engineering, 9(2):026011, February 2012 (article)

Abstract
We report on the development and online testing of an electroencephalogram-based brain–computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare 'oddball' stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

PDF DOI Project Page [BibTex]


Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

DOI [BibTex]

DOI [BibTex]

2011


Fronto-Parietal Gamma-Oscillations are a Cause of Performance Variation in Brain-Computer Interfacing

Grosse-Wentrup, M.

In pages: 384-387, IEEE, Piscataway, NJ, USA, 5th International IEEE/EMBS Conference on Neural Engineering (NER) , May 2011 (inproceedings)

Abstract
In recent work, we have provided evidence that fronto-parietal γ-oscillations of the electromagnetic field of the brain modulate the sensorimotor-rhythm. It is unclear, however, what impact this effect may have on explaining and addressing within-subject performance variations of brain-computer interfaces (BCIs). In this paper, we provide evidence that on a group-average classification accuracies in a two-class motor-imagery paradigm differ by up to 22.2% depending on the state of fronto-parietal γ-power. As such, this effect may have a large impact on the design of future BCI-systems. We further investigate whether adapting classification procedures to the current state of γ-power improves classification accuracy, and discuss other approaches to exploiting this effect.

PDF Web DOI [BibTex]

2011

PDF Web DOI [BibTex]


Neurofeedback of Fronto-Parietal Gamma-Oscillations

Grosse-Wentrup, M.

In pages: 172-175, (Editors: Müller-Putz, G.R. , R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper), Verlag der Technischen Universität Graz, Graz, Austria, 5th International Brain-Computer Interface Conference (BCI), September 2011 (inproceedings)

Abstract
In recent work, we have provided evidence that fronto-parietal γ-range oscillations are a cause of within-subject performance variations in brain-computer interfaces (BCIs) based on motor-imagery. Here, we explore the feasibility of using neurofeedback of fronto-parietal γ-power to induce a mental state that is beneficial for BCI-performance. We provide empirical evidence based on two healthy subjects that intentional attenuation of fronto-parietal γ-power results in an enhanced resting-state sensorimotor-rhythm (SMR). As a large resting-state amplitude of the SMR has been shown to correlate with good BCI-performance, our approach may provide a means to reduce performance variations in BCIs.

PDF Web [BibTex]

PDF Web [BibTex]


Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

Journal of Neural Engineering, 8(3):1-12, June 2011 (article)

Abstract
The combination of brain–computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

PDF PDF DOI Project Page [BibTex]


Towards Brain-Robot Interfaces in Stroke Rehabilitation

Gomez Rodriguez, M., Grosse-Wentrup, M., Hill, J., Gharabaghi, A., Schölkopf, B., Peters, J.

In pages: 6, IEEE, Piscataway, NJ, USA, 12th International Conference on Rehabilitation Robotics (ICORR), July 2011 (inproceedings)

Abstract
A neurorehabilitation approach that combines robot-assisted active physical therapy and Brain-Computer Interfaces (BCIs) may provide an additional mileage with respect to traditional rehabilitation methods for patients with severe motor impairment due to cerebrovascular brain damage (e.g., stroke) and other neurological conditions. In this paper, we describe the design and modes of operation of a robot-based rehabilitation framework that enables artificial support of the sensorimotor feedback loop. The aim is to increase cortical plasticity by means of Hebbian-type learning rules. A BCI-based shared-control strategy is used to drive a Barret WAM 7-degree-of-freedom arm that guides a subject's arm. Experimental validation of our setup is carried out both with healthy subjects and stroke patients. We review the empirical results which we have obtained to date, and argue that they support the feasibility of future rehabilitative treatments employing this novel approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Simultaneous EEG Recordings with Dry and Wet Electrodes in Motor-Imagery

Saab, J., Battes, B., Grosse-Wentrup, M.

In pages: 312-315, (Editors: Müller-Putz, G.R. , R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper), Verlag der Technischen Universität Graz, Graz, Austria, 5th International Brain-Computer Interface Conference (BCI), September 2011 (inproceedings)

Abstract
Robust dry EEG electrodes are arguably the key to making EEG Brain-Computer Interfaces (BCIs) a practical technology. Existing studies on dry EEG electrodes can be characterized by the recording method (stand-alone dry electrodes or simultaneous recording with wet electrodes), the dry electrode technology (e.g. active or passive), the paradigm used for testing (e.g. event-related potentials), and the measure of performance (e.g. comparing dry and wet electrode frequency spectra). In this study, an active-dry electrode prototype is tested, during a motor-imagery task, with EEG-BCI in mind. It is used simultaneously with wet electrodes and assessed using classification accuracy. Our results indicate that the two types of electrodes are comparable in their performance but there are improvements to be made, particularly in finding ways to reduce motion-related artifacts.

PDF Web [BibTex]

PDF Web [BibTex]


Multi-subject learning for common spatial patterns in motor-imagery BCI

Devlaminck, D., Wyns, B., Grosse-Wentrup, M., Otte, G., Santens, P.

Computational Intelligence and Neuroscience, 2011(217987):1-9, August 2011 (article)

Abstract
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low.

PDF DOI [BibTex]

PDF DOI [BibTex]


What are the Causes of Performance Variation in Brain-Computer Interfacing?

Grosse-Wentrup, M.

International Journal of Bioelectromagnetism, 13(3):115-116, September 2011 (article)

Abstract
While research on brain-computer interfacing (BCI) has seen tremendous progress in recent years, performance still varies substantially between as well as within subjects, with roughly 10 - 20% of subjects being incapable of successfully operating a BCI system. In this short report, I argue that this variation in performance constitutes one of the major obstacles that impedes a successful commercialization of BCI systems. I review the current state of research on the neuro-physiological causes of performance variation in BCI, discuss recent progress and open problems, and delineate potential research programs for addressing this issue.

PDF Web [BibTex]

PDF Web [BibTex]


Using brain–computer interfaces to induce neural plasticity and restore function

Grosse-Wentrup, M., Mattia, D., Oweiss, K.

Journal of Neural Engineering, 8(2):1-5, April 2011 (article)

Abstract
Analyzing neural signals and providing feedback in real-time is one of the core characteristics of a brain-computer interface (BCI). As this feature may be employed to induce neural plasticity, utilizing BCI-technology for therapeutic purposes is increasingly gaining popularity in the BCI-community. In this review, we discuss the state-of-the-art of research on this topic, address the principles of and challenges in inducing neural plasticity by means of a BCI, and delineate the problems of study design and outcome evaluation arising in this context. The review concludes with a list of open questions and recommendations for future research in this field.

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Causal Influence of Gamma Oscillations on the Sensorimotor Rhythm

Grosse-Wentrup, M., Schölkopf, B., Hill, J.

NeuroImage, 56(2):837-842, May 2011 (article)

Abstract
Gamma oscillations of the electromagnetic field of the brain are known to be involved in a variety of cognitive processes, and are believed to be fundamental for information processing within the brain. While gamma oscillations have been shown to be correlated with brain rhythms at different frequencies, to date no empirical evidence has been presented that supports a causal influence of gamma oscillations on other brain rhythms. In this work, we study the relation of gamma oscillations and the sensorimotor rhythm (SMR) in healthy human subjects using electroencephalography. We first demonstrate that modulation of the SMR, induced by motor imagery of either the left or right hand, is positively correlated with the power of frontal and occipital gamma oscillations, and negatively correlated with the power of centro-parietal gamma oscillations. We then demonstrate that the most simple causal structure, capable of explaining the observed correlation of gamma oscillations and the SMR, entails a causal influence of gamma oscillations on the SMR. This finding supports the fundamental role attributed to gamma oscillations for information processing within the brain, and is of particular importance for brain–computer interfaces (BCIs). As modulation of the SMR is typically used in BCIs to infer a subject's intention, our findings entail that gamma oscillations have a causal influence on a subject's capability to utilize a BCI for means of communication.

PDF DOI Project Page Project Page [BibTex]


Critical issues in state-of-the-art brain–computer interface signal processing

Krusienski, D., Grosse-Wentrup, M., Galan, F., Coyle, D., Miller, K., Forney, E., Anderson, C.

Journal of Neural Engineering, 8(2):1-8, April 2011 (article)

Abstract
This paper reviews several critical issues facing signal processing for brain–computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation.

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]

2010


Biased Feedback in Brain-Computer Interfaces

Barbero, A., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 7(34):1-4, July 2010 (article)

Abstract
Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject‘s current skill level.

PDF DOI Project Page [BibTex]

2010

PDF DOI Project Page [BibTex]


Combining Real-Time Brain-Computer Interfacing and Robot Control for Stroke Rehabilitation

Gomez Rodriguez, M., Peters, J., Hill, J., Gharabaghi, A., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of SIMPAR 2010 Workshops, pages: 59-63, Brain-Computer Interface Workshop at SIMPAR: 2nd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, November 2010 (inproceedings)

Abstract
Brain-Computer Interfaces based on electrocorticography (ECoG) or electroencephalography (EEG), in combination with robot-assisted active physical therapy, may support traditional rehabilitation procedures for patients with severe motor impairment due to cerebrovascular brain damage caused by stroke. In this short report, we briefly review the state-of-the art in this exciting new field, give an overview of the work carried out at the Max Planck Institute for Biological Cybernetics and the University of T{\"u}bingen, and discuss challenges that need to be addressed in order to move from basic research to clinical studies.

PDF Web [BibTex]

PDF Web [BibTex]


Epidural ECoG Online Decoding of Arm Movement Intention in Hemiparesis

Gomez Rodriguez, M., Grosse-Wentrup, M., Peters, J., Naros, G., Hill, J., Schölkopf, B., Gharabaghi, A.

In Proceedings of the 1st ICPR Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (ICPR WBD 2010), pages: 36-39, (Editors: J. Richiardi and D Van De Ville and C Davatzikos and J Mourao-Miranda), IEEE, Piscataway, NJ, USA, 1st Workshop on Brain Decoding (WBD), August 2010 (inproceedings)

Abstract
Brain-Computer Interfaces (BCI) that rely upon epidural electrocorticographic signals may become a promising tool for neurorehabilitation of patients with severe hemiparatic syndromes due to cerebrovascular, traumatic or tumor-related brain damage. Here, we show in a patient-based feasibility study that online classification of arm movement intention is possible. The intention to move or to rest can be identified with high accuracy (~90 %), which is sufficient for BCI-guided neurorehabilitation. The observed spatial distribution of relevant features on the motor cortex indicates that cortical reorganization has been induced by the brain lesion. Low- and high-frequency components of the electrocorticographic power spectrum provide complementary information towards classification of arm movement intention.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Multitask Learning for Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 17-24, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics , May 2010 (inproceedings)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subjectspecific calibration data prior to actual use of the BCI for communication. In this paper, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process. We discuss how this out-of-the-box BCI can be further improved in a computationally efficient manner as subject-specific data becomes available. The feasibility of the approach is demonstrated on two sets of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of 19 healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and combining prior recordings with subjectspecific calibration data substantially outperforms using subject-specific data only. Our results further show that transfer between recordings under slightly different experimental setups is feasible.

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]

2009


Implicit Wiener Series Analysis of Epileptic Seizure Recordings

Barbero, A., Franz, M., Drongelen, W., Dorronsoro, J., Schölkopf, B., Grosse-Wentrup, M.

In EMBC 2009, pages: 5304-5307, (Editors: Y Kim and B He and G Worrell and X Pan), IEEE Service Center, Piscataway, NJ, USA, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, September 2009 (inproceedings)

Abstract
Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of nonlinearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.

PDF Web DOI [BibTex]

2009

PDF Web DOI [BibTex]


Beamforming in Noninvasive Brain-Computer Interfaces

Grosse-Wentrup, M., Liefhold, C., Gramann, K., Buss, M.

IEEE Transactions on Biomedical Engineering, 56(4):1209-1219, April 2009 (article)

Abstract
Spatial filtering (SF) constitutes an integral part of building EEG-based brain–computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject‘s intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.

PDF Web DOI Project Page [BibTex]

PDF Web DOI Project Page [BibTex]


Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing

Grosse-Wentrup, M.

In Advances in neural information processing systems 21, pages: 561-568, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
EEG connectivity measures could provide a new type of feature space for inferring a subject‘s intention in Brain-Computer Interfaces (BCIs). However, very little is known on EEG connectivity patterns for BCIs. In this study, EEG connectivity during motor imagery (MI) of the left and right is investigated in a broad frequency range across the whole scalp by combining Beamforming with Transfer Entropy and taking into account possible volume conduction effects. Observed connectivity patterns indicate that modulation intentionally induced by MI is strongest in the gamma-band, i.e., above 35 Hz. Furthermore, modulation between MI and rest is found to be more pronounced than between MI of different hands. This is in contrast to results on MI obtained with bandpower features, and might provide an explanation for the so far only moderate success of connectivity features in BCIs. It is concluded that future studies on connectivity based BCIs should focus on high frequency bands and con side r ex peri mental paradigms that maximally vary cognitive demands between conditions.

PDF Web [BibTex]

PDF Web [BibTex]

2008


Multi-class Common Spatial Pattern and Information Theoretic Feature Extraction

Grosse-Wentrup, M., Buss, M.

IEEE Transactions on Biomedical Engineering, 55(8):1991-2000, August 2008 (article)

Abstract
We address two shortcomings of the common spatial patterns (CSP) algorithm for spatial filtering in the context of brain--computer interfaces (BCIs) based on electroencephalography/magnetoencephalography (EEG/MEG): First, the question of optimality of CSP in terms of the minimal achievable classification error remains unsolved. Second, CSP has been initially proposed for two-class paradigms. Extensions to multiclass paradigms have been suggested, but are based on heuristics. We address these shortcomings in the framework of information theoretic feature extraction (ITFE). We show that for two-class paradigms, CSP maximizes an approximation of mutual information of extracted EEG/MEG components and class labels. This establishes a link between CSP and the minimal classification error. For multiclass paradigms, we point out that CSP by joint approximate diagonalization (JAD) is equivalent to independent component analysis (ICA), and provide a method to choose those independent components (ICs) that approximately maximize mutual information of ICs and class labels. This eliminates the need for heuristics in multiclass CSP, and allows incorporating prior class probabilities. The proposed method is applied to the dataset IIIa of the third BCI competition, and is shown to increase the mean classification accuracy by 23.4% in comparison to multiclass CSP.

PDF Web DOI [BibTex]

2008

PDF Web DOI [BibTex]