190 results (BibTeX)

2007


Pattern detection

Blake, A., Romdhani, S., Schölkopf, B., Torr, P.

United States Patent, No 7236626, June 2007 (patent)

[BibTex]

2007

[BibTex]


The role of the striatum in adaptation learning: a computational model

Grosse-Wentrup, M., Contreras-Vidal, J.

Biological Cybernetics, 96(4):377-388, April 2007 (article)

Abstract
To investigate the functional role of the striatum in visuo-motor adaptation, we extend the DIRECT-model for visuo-motor reaching movements formulated by Bullock et al.(J Cogn Neurosci 5:408–435,1993) through two parallel loops, each modeling a distinct contribution of the cortico–cerebellar–thalamo–cortical and the cortico–striato–thalamo–cortical networks to visuo-motor adaptation. Based on evidence of Robertson and Miall(Neuroreport 10(5): 1029–1034, 1999), we implement the function of the cortico–cerebellar–thalamo–cortical loop as a module that gradually adapts to small changes in sensorimotor relationships. The cortico–striato–thalamo–cortical loop on the other hand is hypothesized to act as an adaptive search element, guessing new sensorimotor-transformations and reinforcing successful guesses while punishing unsuccessful ones. In a first step, we show that the model reproduces trajectories and error curves of healthy subjects in a two dimensional center-out reaching task with rotated screen cursor visual feedback. In a second step, we disable learning processes in the cortico–striato– thalamo–cortical loop to simulate subjects with Parkinson’s disease (PD), and show that this leads to error curves typical of subjects with PD. We conclude that the results support our hypothesis, i.e., that the role of the cortico–striato–thalamo–cortical loop in visuo-motor adaptation is that of an adaptive search element.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Asymptotic stability of the solution of the M/MB/1 queueing model

Haji, A., Radl, A.

Computers and Mathematics with Applications, 53(9):1411-1420, May 2007 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

Web DOI [BibTex]


Competition and Coordination in Stochastic Games

Burkov, A., Boularias, A., Chaib-Draa, B.

In Canadian AI 2007, pages: 26-37, (Editors: Kobti, Z. , D. Wu), Springer, Berlin, Germany, 20th Conference of the Canadian Society for Computational Studies of Intelligence, May 2007 (inproceedings)

Abstract
Agent competition and coordination are two classical and most important tasks in multiagent systems. In recent years, there was a number of learning algorithms proposed to resolve such type of problems. Among them, there is an important class of algorithms, called adaptive learning algorithms, that were shown to be able to converge in self-play to a solution in a wide variety of the repeated matrix games. Although certain algorithms of this class, such as Infinitesimal Gradient Ascent (IGA), Policy Hill-Climbing (PHC) and Adaptive Play Q-learning (APQ), have been catholically studied in the recent literature, a question of how these algorithms perform versus each other in general form stochastic games is remaining little-studied. In this work we are trying to answer this question. To do that, we analyse these algorithms in detail and give a comparative analysis of their behavior on a set of competition and coordination stochastic games. Also, we introduce a new multiagent learning algorithm, called ModIGA. This is an extension of the IGA algorithm, which is able to estimate the strategy of its opponents in the cases when they do not explicitly play mixed strategies (e.g., APQ) and which can be applied to the games with more than two actions.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Exploring model selection techniques for nonlinear dimensionality reduction

Harmeling, S.

(EDI-INF-RR-0960), School of Informatics, University of Edinburgh, March 2007 (techreport)

Abstract
Nonlinear dimensionality reduction (NLDR) methods have become useful tools for practitioners who are faced with the analysis of high-dimensional data. Of course, not all NLDR methods are equally applicable to a particular dataset at hand. Thus it would be useful to come up with model selection criteria that help to choose among different NLDR algorithms. This paper explores various approaches to this problem and evaluates them on controlled data sets. Comprehensive experiments will show that model selection scores based on stability are not useful, while scores based on Gaussian processes are helpful for the NLDR problem.

PDF Web [BibTex]

PDF Web [BibTex]


Benchmarking of Policy Gradient Methods

Peters, J.

ADPRL Workshop, April 2007 (talk)

[BibTex]

[BibTex]


Fusion of spectral and spatial information by a novel SVM classification technique

Bruzzone, L., Marconcini, M., Persello, C.

In pages: 4838-4841 , IEEE, Piscataway, NJ, USA, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 2007 (inproceedings)

Abstract
A novel context-sensitive semisupervised classification technique based on support vector machines is proposed. This technique aims at exploiting the SVM method for image classification by properly fusing spectral information with spatial- context information. This results in: i) an increased robustness to noisy training sets in the learning phase of the classifier; ii) a higher and more stable classification accuracy with respect to the specific patterns included in the training set; and iii) a regularized classification map. The main property of the proposed context sensitive semisupervised SVM (CS4VM) is to adaptively exploit the contextual information in the training phase of the classifier, without any critical assumption on the expected labels of the pixels included in the same neighborhood system. This is done by defining a novel context-sensitive term in the objective function used in the learning of the classifier. In addition, the proposed CS4VM can be integrated with a Markov random field (MRF) approach for exploiting the contextual information also to regularize the classification map. Experiments carried out on very high geometrical resolution images confirmed the effectiveness of the proposed technique.

Web DOI [BibTex]

Web DOI [BibTex]


MR Angiography of Dural Arteriovenous Fistulas: Diagnosis and Follow-Up after Treatment Using a Time-Resolved 3D Contrast-Enhanced Technique

Meckel, S., Maier, M., San Millan Ruiz, D., Yilmaz, H., Scheffler, K., Radü, E., Wetzel, S.

American Journal of Neuroradiology, 28(5):877-884, May 2007 (article)

Abstract
BACKGROUND AND PURPOSE: Digital subtraction angiography (DSA) is the method of reference for imaging of dural arteriovenous fistula (DAVF). The goal of this study was to analyze the value of different MR images including 3D contrast-enhanced MR angiography (MRA) with a high temporal resolution in diagnostic and follow-up imaging of DAVFs. MATERIALS AND METHODS: A total of 18 MR/MRA examinations from 14 patients with untreated (n = 9) and/or treated (n = 9) DAVFs were evaluated. Two observers assessed all MR and MRA investigations for signs indicating the presence of a DAVF, for fistula characteristics such as fistula grading, location of fistulous point, and fistula obliteration after treatment. All results were compared with DSA findings. RESULTS: On time-resolved 3D contrast-enhanced (TR 3D) MRA, the side and presence of all patent fistulas (n = 13) were correctly indicated, and no false-positive findings were observed in occluded DAVFs (n = 5). Grading of fistulas with this imaging technique was correct in 77% and 85% of patent fistulas for both readers, respectively. On T2-weighted images, signs indicative of a DAVF were encountered only in fistulas with cortical venous reflux (56%), whereas on 3D time-of-flight (TOF) MRA, most fistulas (88%) were correctly detected. In complete fistula occlusion, false-positive findings were encountered on both T2-weighted images and on TOF MRA images. CONCLUSION: In this study, TR 3D MRA proved reliable in detecting DAVFs and suitable for follow-up imaging. The technique allowed—within limitations—to grade DAVFs. Although 3D TOF MRA can depict signs of DAVFs, its value for follow-up imaging is limited.

Web [BibTex]

Web [BibTex]


Independent Factor Reinforcement Learning for Portfolio Management

Li, J., Zhang, K., Chan, L.

In Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2007), pages: 1020-1031, (Editors: H Yin and P Tiño and E Corchado and W Byrne and X Yao), Springer, Berlin, Germany, 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), 2007 (inproceedings)

Web [BibTex]

Web [BibTex]


Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

PDF DOI [BibTex]

PDF DOI [BibTex]


Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

Web DOI [BibTex]

Web DOI [BibTex]


A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

PDF Web [BibTex]

PDF Web [BibTex]


The Independent Components of Natural Images are Perceptually Dependent

Bethge, M., Wiecki, T., Wichmann, F.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
The independent components of natural images are a set of linear filters which are optimized for statistical independence. With such a set of filters images can be represented without loss of information. Intriguingly, the filter shapes are localized, oriented, and bandpass, resembling important properties of V1 simple cell receptive fields. Here we address the question of whether the independent components of natural images are also perceptually less dependent than other image components. We compared the pixel basis, the ICA basis and the discrete cosine basis by asking subjects to interactively predict missing pixels (for the pixel basis) or to predict the coefficients of ICA and DCT basis functions in patches of natural images. Like Kersten (1987) we find the pixel basis to be perceptually highly redundant but perhaps surprisingly, the ICA basis showed significantly higher perceptual dependencies than the DCT basis. This shows a dissociation between statistical and perceptual dependence measures.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

Deisenroth, MP. Weissel, F. Ohtsuka, T. Hanebeck, UD.

In ECC‘07, pages: 3664-3671, 9th European Control Conference, July 2007 (inproceedings)

Abstract
A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means o f a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller.

PDF Web [BibTex]

PDF Web [BibTex]


Change-Point Detection using Krylov Subspace Learning

Ide, T., Tsuda, K.

In SDM 2007, pages: 515-520, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detection algorithm, and show that it results in about 50 times improvement in computational time.

PDF Web [BibTex]

PDF Web [BibTex]


Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

PDF Web [BibTex]

PDF Web [BibTex]


Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

PDF Web [BibTex]

PDF Web [BibTex]


Supervised Feature Selection via Dependence Estimation

Song, L., Smola, A., Gretton, A., Borgwardt, K., Bedo, J.

In Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), pages: 823-830, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, Twenty-Fourth Annual International Conference on Machine Learning (ICML), June 2007 (inproceedings)

Abstract
We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The key idea is that good features should maximise such dependence. Feature selection for various supervised learning problems (including classification and regression) is unified under this framework, and the solutions can be approximated using a backward-elimination algorithm. We demonstrate the usefulness of our method on both artificial and real world datasets.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


A Kernel-Based Causal Learning Algorithm

Sun, X., Janzing, D., Schölkopf, B., Fukumizu, K.

In Proceedings of the 24th International Conference on Machine Learning, pages: 855-862, (Editors: Z Ghahramani), ACM Press, New York, NY, USA, ICML, June 2007 (inproceedings)

Abstract
We describe a causal learning method, which employs measuring the strength of statistical dependences in terms of the Hilbert-Schmidt norm of kernel-based cross-covariance operators. Following the line of the common faithfulness assumption of constraint-based causal learning, our approach assumes that a variable Z is likely to be a common effect of X and Y, if conditioning on Z increases the dependence between X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges by the majority principle. In most experiments with known causal structures, our method provided plausible results and outperformed the conventional constraint-based PC algorithm.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Entire Regularization Paths for Graph Data

Tsuda, K.

In ICML 2007, pages: 919-926, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, 24th Annual International Conference on Machine Learning, June 2007 (inproceedings)

Abstract
Graph data such as chemical compounds and XML documents are getting more common in many application domains. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraph patterns, the dimensionality gets too large for usual statistical methods. We propose an efficient method to select a small number of salient patterns by regularization path tracking. The generation of useless patterns is minimized by progressive extension of the search space. In experiments, it is shown that our technique is considerably more efficient than a simpler approach based on frequent substructure mining.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


A Local Learning Approach for Clustering

Wu, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 19, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We present a local learning approach for clustering. The basic idea is that a good clustering result should have the property that the cluster label of each data point can be well predicted based on its neighboring data and their cluster labels, using current supervised learning methods. An optimization problem is formulated such that its solution has the above property. Relaxation and eigen-decomposition are applied to solve this optimization problem. We also briefly investigate the parameter selection issue and provide a simple parameter selection method for the proposed algorithm. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

DOI [BibTex]

DOI [BibTex]


Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

PDF Web [BibTex]

PDF Web [BibTex]


Sparse Multiscale Gaussian Process Regression

Walder, C., Kim, K., Schölkopf, B.

(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaussian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis functions and any given criteria, this additional flexibility permits approximations no worse and typically better than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis functions, i.e. a very high sparsity ratio.

PDF [BibTex]

PDF [BibTex]


Do We Know What the Early Visual System Computes?

Bethge, M., Kayser, C.

31st G{\"o}ttingen Neurobiology Conference, 31, pages: 352, March 2007 (poster)

Abstract
Decades of research provided much data and insights into the mechanisms of the early visual system. Currently, however, there is great controversy on whether these findings can provide us with a thorough functional understanding of what the early visual system does, or formulated differently, of what it computes. At the Society for Neuroscience meeting 2005 in Washington, a symposium was held on the question "Do we know that the early visual system does", which was accompanied by a widely regarded publication in the Journal of Neuroscience. Yet, that discussion was rather specialized as it predominantly addressed the question of how well neural responses in retina, LGN, and cortex can be predicted from noise stimuli, but did not emphasize the question of whether we understand what the function of these early visual areas is. Here we will concentrate on this neuro-computational aspect of vision. Experts from neurobiology, psychophysics and computational neuroscience will present studies which approach this question from different viewpoints and promote a critical discussion of whether we actually understand what early areas contribute to the processing and perception of visual information.

PDF [BibTex]

PDF [BibTex]


Better Codes for the P300 Visual Speller

Biessmann, F., Hill, N., Farquhar, J., Schölkopf, B.

G{\"o}ttingen Meeting of the German Neuroscience Society, 7, pages: 123, March 2007 (poster)

PDF [BibTex]

PDF [BibTex]


MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

PDF PDF [BibTex]

PDF PDF [BibTex]


Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

Web [BibTex]

Web [BibTex]


Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

PDF [BibTex]

PDF [BibTex]


Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

PDF Web [BibTex]

PDF Web [BibTex]


MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

PDF Web [BibTex]

PDF Web [BibTex]


Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

Web [BibTex]

Web [BibTex]


Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

Web [BibTex]

Web [BibTex]


Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Web [BibTex]

Web [BibTex]


Overcomplete Independent Component Analysis via Linearly Constrained Minimum Variance Spatial Filtering

Grosse-Wentrup, M., Buss, M.

Journal of VLSI Signal Processing, 48(1-2):161-171, August 2007 (article)

Abstract
Independent Component Analysis (ICA) designed for complete bases is used in a variety of applications with great success, despite the often questionable assumption of having N sensors and M sources with N&#8805;M. In this article, we assume a source model with more sources than sensors (M>N), only L<N of which are assumed to have a non-Gaussian distribution. We argue that this is a realistic source model for a variety of applications, and prove that for ICA algorithms designed for complete bases (i.e., algorithms assuming N=M) based on mutual information the mixture coefficients of the L non-Gaussian sources can be reconstructed in spite of the overcomplete mixture model. Further, it is shown that the reconstructed temporal activity of non-Gaussian sources is arbitrarily mixed with Gaussian sources. To obtain estimates of the temporal activity of the non-Gaussian sources, we use the correctly reconstructed mixture coefficients in conjunction with linearly constrained minimum variance spatial filtering. This results in estimates of the non-Gaussian sources minimizing the variance of the interference of other sources. The approach is applied to the denoising of Event Related Fields recorded by MEG, and it is shown that it performs superiorly to ordinary ICA.

PDF PDF DOI [BibTex]


Les Représentations Prédictives des États et des Politiques

Boularias, A., Chaib-Draa, B.

In MFI 2007, pages: 37-48, Quatrièmes Journées Francophones Modèles Formels de l‘Interaction, June 2007 (inproceedings)

Abstract
Nous proposons dans cet article une nouvelle approche pour représenter les politiques (stratégies) dans les environnements stochastiques et partiellement observables. Nous nous intéressons plus particulièrement aux systèmes multi-agents, où chaque agent connaît uniquement ses propres politiques, et doit choisir la meilleure parmi elles selon son état de croyance sur les politiques du reste des agents. Notre modèle utilise moins de paramètres que les méthodes de représentation usuelles, telles que les arbres de décision ou les contrôleurs d’états finis stochastiques, permettant ainsi une accélération des algorithmes de planification. Nous montrons aussi comment ce modèle peut être utilisé efficacement dans le cas de la planification multiagents coopérative et sans communication, les résultats empiriques sont comparés avec le modèle DEC-POMDP (Decentralized Partially Observable Markov Decision Process).

PDF Web [BibTex]

PDF Web [BibTex]


Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

Grosse-Wentrup, M., Gramann, K., Buss, M.

In Advances in Neural Information Processing Systems 19, pages: 537-544, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP-algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 % without artifact rejection.

PDF Web [BibTex]

PDF Web [BibTex]


A Bayesian Approach to Nonlinear Parameter Identification for Rigid Body Dynamics

Ting, J., Mistry, M., Peters, J., Schaal, S., Nakanishi, J.

In RSS 2006, pages: 247-254, (Editors: Sukhatme, G. S., S. Schaal, W. Burgard, D. Fox), MIT Press, Cambridge, MA, USA, Robotics: Science and Systems II (RSS ), April 2007 (inproceedings)

Abstract
For robots of increasing complexity such as humanoid robots, conventional identification of rigid body dynamics models based on CAD data and actuator models becomes difficult and inaccurate due to the large number of additional nonlinear effects in these systems, e.g., stemming from stiff wires, hydraulic hoses, protective shells, skin, etc. Data driven parameter estimation offers an alternative model identification method, but it is often burdened by various other problems, such as significant noise in all measured or inferred variables of the robot. The danger of physically inconsistent results also exists due to unmodeled nonlinearities or insufficiently rich data. In this paper, we address all these problems by developing a Bayesian parameter identification method that can automatically detect noise in both input and output data for the regression algorithm that performs system identification. A post-processing step ensures physically consistent rigid body parameters by nonlinearly projecting the result of the Bayesian estimation onto constraints given by positive definite inertia matrices and the parallel axis theorem. We demonstrate on synthetic and actual robot data that our technique performs parameter identification with 5 to 20% higher accuracy than traditional methods. Due to the resulting physically consistent parameters, our algorithm enables us to apply advanced control methods that algebraically require physical consistency on robotic platforms.

PDF Web [BibTex]

PDF Web [BibTex]


Modeling data using directional distributions: Part II

Sra, S., Jain, P., Dhillon, I.

(TR-07-05), University of Texas, Austin, TX, USA, February 2007 (techreport)

Abstract
High-dimensional data is central to most data mining applications, and only recently has it been modeled via directional distributions. In [Banerjee et al., 2003] the authors introduced the use of the von Mises-Fisher (vMF) distribution for modeling high-dimensional directional data, particularly for text and gene expression analysis. The vMF distribution is one of the simplest directional distributions. TheWatson, Bingham, and Fisher-Bingham distributions provide distri- butions with an increasing number of parameters and thereby commensurately increased modeling power. This report provides a followup study to the initial development in [Banerjee et al., 2003] by presenting Expectation Maximization (EM) procedures for estimating parameters of a mixture of Watson (moW) distributions. The numerical challenges associated with parameter estimation for both of these distributions are significantly more difficult than for the vMF distribution. We develop new numerical approximations for estimating the parameters permitting us to model real- life data more accurately. Our experimental results establish that for certain data sets improved modeling power translates into better results.

PDF [BibTex]

PDF [BibTex]


Sistema avanzato per la classificazione delle aree agricole in immagini ad elevata risoluzione geometrica: applicazione al territorio del Trentino

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

In pages: 1-6, 11. Conferenza Nazionale ASITA, November 2007 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

[BibTex]

[BibTex]


Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

[BibTex]