132 results (BibTeX)

2004


Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P.

United States Patent, No 6804391, October 2004 (patent)

[BibTex]

2004

[BibTex]


cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

[BibTex]

[BibTex]


Insect-inspired estimation of egomotion

Franz, MO. Chahl, JS. Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

Web [BibTex]

Web [BibTex]


Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

PDF DOI [BibTex]

PDF DOI [BibTex]


Exponential Families for Conditional Random Fields

Altun, Y., Smola, A., Hofmann, T.

In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), pages: 2-9, (Editors: Chickering, D.M. , J.Y. Halpern), Morgan Kaufmann, San Francisco, CA, USA, 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 2004 (inproceedings)

Abstract
In this paper we define conditional random fields in reproducing kernel Hilbert spaces and show connections to Gaussian Process classification. More specifically, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present efficient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited efficiently in the optimization process.

PDF Web [BibTex]

PDF Web [BibTex]


Unifying Colloborative and Content-Based Filtering.

Basilico, J., Hofmann, T.

In ACM International Conference Proceeding Series, pages: 65 , (Editors: Greiner, R. , D. Schuurmans), ACM Press, New York, USA, ICLM, 2004 (inproceedings)

Abstract
Collaborative and content-based filtering are two paradigms that have been applied in the context of recommender systems and user preference prediction. This paper proposes a novel, unified approach that systematically integrates all available training information such as past user-item ratings as well as attributes of items or users to learn a prediction function. The key ingredient of our method is the design of a suitable kernel or similarity function between user-item pairs that allows simultaneous generalization across the user and item dimensions. We propose an on-line algorithm (JRank) that generalizes perceptron learning. Experimental results on the EachMovie data set show significant improvements over standard approaches.

PDF [BibTex]

PDF [BibTex]


Clustering Protein Sequence and Structure Space with Infinite Gaussian Mixture Models

Dubey, A. Hwang, S. Rangel, C. Rasmussen, CE. Ghahramani, Z. Wild, DL.

In Pacific Symposium on Biocomputing 2004; Vol. 9, pages: 399-410, World Scientific Publishing, Singapore, Pacific Symposium on Biocomputing, 2004 (inproceedings)

Abstract
We describe a novel approach to the problem of automatically clustering protein sequences and discovering protein families, subfamilies etc., based on the thoery of infinite Gaussian mixture models. This method allows the data itself to dictate how many mixture components are required to model it, and provides a measure of the probability that two proteins belong to the same cluster. We illustrate our methods with application to three data sets: globin sequences, globin sequences with known tree-dimensional structures and G-pretein coupled receptor sequences. The consistency of the clusters indicate that that our methods is producing biologically meaningful results, which provide a very good indication of the underlying families and subfamilies. With the inclusion of secondary structure and residue solvent accessibility information, we obtain a classification of sequences of known structure which reflects and extends their SCOP classifications. A supplementary web site containing larger versions of the figures is available at http://public.kgi.edu/~wild/PSB04

PDF [BibTex]

PDF [BibTex]


Modelling Spikes with Mixtures of Factor Analysers

Görür, D., Rasmussen, C., Tolias, A., Sinz, F., Logothetis, N.

In Pattern Recognition, pages: 391-398, LNCS 3175, (Editors: Rasmussen, C. E. , H.H. Bülthoff, B. Schölkopf, M.A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging problem. We consider the spike sorting problem using a generative model,mixtures of factor analysers, which concurrently performs clustering and feature extraction. The most important advantage of this method is that it quantifies the certainty with which the spikes are classified. This can be used as a means for evaluating the quality of clustering and therefore spike isolation. Using this method, nearly simultaneously occurring spikes can also be modelled which is a hard task for many of the spike sorting methods. Furthermore, modelling the data with a generative model allows us to generate simulated data.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Efficient Approximations for Support Vector Machines in Object Detection

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In DAGM 2004, pages: 54-61, (Editors: CE Rasmussen and HH Bülthoff and B Schölkopf and MA Giese), Springer, Berlin, Germany, Pattern Recognition, Proceedings of the 26th DAGM Symposium, 2004 (inproceedings)

Abstract
We present a new approximation scheme for support vector decision functions in object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller so-called reduced set of synthetic points. Instead of finding the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic vectors such that the resulting approximation can be evaluated via separable filters. Applications that require scanning an entire image can benefit from this representation: when using separable filters, the average computational complexity for evaluating a reduced set vector on a test patch of size (h x w) drops from O(hw) to O(h+w). We show experimental results on handwritten digits and face detection.

PDF [BibTex]

PDF [BibTex]


Kernel Methods for Manifold Estimation

Schölkopf, B.

In Proceedings in Computational Statistics, pages: 441-452, (Editors: J Antoch), Physica-Verlag/Springer, Heidelberg, Germany, COMPSTAT, 2004 (inproceedings)

[BibTex]

[BibTex]


Learning Depth From Stereo

Sinz, F., Candela, J., BakIr, G., Rasmussen, C., Franz, M.

In 26th DAGM Symposium, pages: 245-252, LNCS 3175, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
We compare two approaches to the problem of estimating the depth of a point in space from observing its image position in two different cameras: 1.~The classical photogrammetric approach explicitly models the two cameras and estimates their intrinsic and extrinsic parameters using a tedious calibration procedure; 2.~A generic machine learning approach where the mapping from image to spatial coordinates is directly approximated by a Gaussian Process regression. Our results show that the generic learning approach, in addition to simplifying the procedure of calibration, can lead to higher depth accuracies than classical calibration although no specific domain knowledge is used.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


A Regularization Framework for Learningfrom Graph Data

Zhou, D., Schölkopf, B.

In ICML Workshop on Statistical Relational Learning and Its Connections to Other Fields, pages: 132-137, ICML, 2004 (inproceedings)

Abstract
The data in many real-world problems can be thought of as a graph, such as the web, co-author networks, and biological networks. We propose a general regularization framework on graphs, which is applicable to the classification, ranking, and link prediction problems. We also show that the method can be explained as lazy random walks. We evaluate the method on a number of experiments.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Gaussian Processes in Machine Learning

Rasmussen, CE.

In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Multivariate Regression with Stiefel Constraints

Bakir, G., Gretton, A., Franz, M., Schölkopf, B.

(128), MPI for Biological Cybernetics, Spemannstr 38, 72076, Tuebingen, 2004 (techreport)

Abstract
We introduce a new framework for regression between multi-dimensional spaces. Standard methods for solving this problem typically reduce the problem to one-dimensional regression by choosing features in the input and/or output spaces. These methods, which include PLS (partial least squares), KDE (kernel dependency estimation), and PCR (principal component regression), select features based on different a-priori judgments as to their relevance. Moreover, loss function and constraints are chosen not primarily on statistical grounds, but to simplify the resulting optimisation. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective. Our approach also allows for the possibility of using a regularizer in the optimization. Finally, by processing the observations sequentially, our algorithm is able to work on large scale problems.

PDF [BibTex]

PDF [BibTex]


Semi-Supervised Induction

Yu, K., Tresp, V., Zhou, D.

(141), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, August 2004 (techreport)

Abstract
Considerable progress was recently achieved on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabelled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper investigates learning methods that effectively make use of both labelled and unlabelled data to build predictive functions, which are defined on not just the seen inputs but the whole space. As a nice property, the proposed method allows effcient training and can easily handle new test points. We validate the method based on both toy data and real world data sets.

PDF PDF [BibTex]

PDF PDF [BibTex]


Neural mechanisms underlying control of a Brain-Computer-Interface (BCI): Simultaneous recording of bold-response and EEG

Hinterberger, T. Wilhelm, B. Veit, R. Weiskopf, N. Lal, TN. Birbaumer, N.

2004 (poster)

Abstract
Brain computer interfaces (BCI) enable humans or animals to communicate or activate external devices without muscle activity using electric brain signals. The BCI Thought Translation Device (TTD) uses learned regulation of slow cortical potentials (SCPs), a skill most people and paralyzed patients can acquire with training periods of several hours up to months. The neurophysiological mechanisms and anatomical sources of SCPs and other event-related brain macro-potentials are well understood, but the neural mechanisms underlying learning of the self-regulation skill for BCI-use are unknown. To uncover the relevant areas of brain activation during regulation of SCPs, the TTD was combined with functional MRI and EEG was recorded inside the MRI scanner in twelve healthy participants who have learned to regulate their SCP with feedback and reinforcement. The results demonstrate activation of specific brain areas during execution of the brain regulation skill: successf! ul control of cortical positivity allowing a person to activate an external device was closely related to an increase of BOLD (blood oxygen level dependent) response in the basal ganglia and frontal premotor deactivation indicating learned regulation of a cortical-striatal loop responsible for local excitation thresholds of cortical assemblies. The data suggest that human users of a BCI learn the regulation of cortical excitation thresholds of large neuronal assemblies as a prerequisite of direct brain communication: the learning of this skill depends critically on an intact and flexible interaction between these cortico-basal ganglia-circuits. Supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Institute of Health (NIH).

[BibTex]

[BibTex]


S-cones contribute to flicker brightness in human vision

Wehrhahn, C. Hill, NJ. Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

Web [BibTex]

Web [BibTex]


Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

Zhou, D.

January 2004 (talk)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

PDF [BibTex]


Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

PDF [BibTex]


Constant infusion H215O PET and acetazolamide challenge in the assessment of the cerebral perfusion status

Weber, B., Westera, G., Treyer, V., Burger, C., Kahn, N., Buck, A.

Journal of Nuclear Medicine, (45):1344-1349, 2004 (article)

[BibTex]

[BibTex]


Gaussian Process Classification for Segmenting and Annotating Sequences

Altun, Y., Hofmann, T., Smola, A.

In Proceedings of the 21st International Conference on Machine Learning (ICML 2004), pages: 25-32, (Editors: Greiner, R. , D. Schuurmans), ACM Press, New York, USA, 21st International Conference on Machine Learning (ICML), July 2004 (inproceedings)

Abstract
Many real-world classification tasks involve the prediction of multiple, inter-dependent class labels. A prototypical case of this sort deals with prediction of a sequence of labels for a sequence of observations. Such problems arise naturally in the context of annotating and segmenting observation sequences. This paper generalizes Gaussian Process classification to predict multiple labels by taking dependencies between neighboring labels into account. Our approach is motivated by the desire to retain rigorous probabilistic semantics, while overcoming limitations of parametric methods like Conditional Random Fields, which exhibit conceptual and computational difficulties in high-dimensional input spaces. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Using kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Honkela, A., Harmeling, S., Lundqvist, L., Valpola, H.

In ICA 2004, pages: 790-797, (Editors: Puntonet, C. G., A. Prieto), Springer, Berlin, Germany, Fifth International Conference on Independent Component Analysis and Blind Signal Separation, October 2004 (inproceedings)

Abstract
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separation, the linear initialisation may in some cases lead it astray. In this paper we study the use of kernel PCA (KPCA) in the initialisation. KPCA is a rather straightforward generalisation of linear PCA and it is much faster to compute than the variational Bayesian method. The experiments show that it can produce significantly better initialisations than linear PCA. Additionally, the model comparison methods provided by the variational Bayesian framework can be easily applied to compare different kernels.

DOI [BibTex]

DOI [BibTex]


Learning with Non-Positive Kernels

Ong, CS. Mary, X. Canu, S. Smola, AJ.

In ICML 2004, pages: 81-81, ACM Press, New York, NY, USA, Twenty-First International Conference on Machine Learning, July 2004 (inproceedings)

Abstract
n this paper we show that many kernel methods can be adapted to deal with indefinite kernels, that is, kernels which are not positive semidefinite. They do not satisfy Mercer‘s condition and they induce associated functional spaces called Reproducing Kernel Kre&icaron;n Spaces (RKKS), a generalization of Reproducing Kernel Hilbert Spaces (RKHS).Machine learning in RKKS shares many "nice" properties of learning in RKHS, such as orthogonality and projection. However, since the kernels are indefinite, we can no longer minimize the loss, instead we stabilize it. We show a general representer theorem for constrained stabilization and prove generalization bounds by computing the Rademacher averages of the kernel class. We list several examples of indefinite kernels and investigate regularization methods to solve spline interpolation. Some preliminary experiments with indefinite kernels for spline smoothing are reported for truncated spectral factorization, Landweber-Fridman iterations, and MR-II.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Local Alignment Kernels for Biological Sequences

Vert, J., Saigo, H., Akutsu, T.

In Kernel Methods in Computational Biology, pages: 131-153, MIT Press, Cambridge, MA,, 2004 (inbook)

Web [BibTex]

Web [BibTex]


Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175

Rasmussen, C., Bülthoff, H., Giese, M., Schölkopf, B.

Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04), pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

Web DOI [BibTex]

Web DOI [BibTex]


Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

Web [BibTex]

Web [BibTex]


Statistical Performance of Support Vector Machines

Blanchard, G., Bousquet, O., Massart, P.

2004 (article)

PostScript [BibTex]


Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

PDF [BibTex]

PDF [BibTex]


Some observations on the effects of slant and texture type on slant-from-texture

Rosas, P., Wichmann, F., Wagemans, J.

Vision Research, 44(13):1511-1535, 2004 (article)

Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.

PDF [BibTex]

PDF [BibTex]


Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

PDF Web [BibTex]

PDF Web [BibTex]


PAC-Bayesian Generic Chaining

Audibert, J., Bousquet, O.

In Advances in Neural Information Processing Systems 16, pages: 1125-1132 , (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
There exist many different generalization error bounds for classification. Each of these bounds contains an improvement over the others for certain situations. Our goal is to combine these different improvements into a single bound. In particular we combine the PAC-Bayes approach introduced by McAllester, which is interesting for averaging classifiers, with the optimal union bound provided by the generic chaining technique developed by Fernique and Talagrand. This combination is quite natural since the generic chaining is based on the notion of majorizing measures, which can be considered as priors on the set of classifiers, and such priors also arise in the PAC-bayesian setting.

PDF Web [BibTex]

PDF Web [BibTex]


Prediction on Spike Data Using Kernel Algorithms

Eichhorn, J., Tolias, A., Zien, A., Kuss, M., Rasmussen, C., Weston, J., Logothetis, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 1367-1374, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We report and compare the performance of different learning algorithms based on data from cortical recordings. The task is to predict the orientation of visual stimuli from the activity of a population of simultaneously recorded neurons. We compare several ways of improving the coding of the input (i.e., the spike data) as well as of the output (i.e., the orientation), and report the results obtained using different kernel algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


A kernel view of the dimensionality reduction of manifolds

Ham, J., Lee, D., Mika, S., Schölkopf, B.

In Proceedings of the Twenty-First International Conference on Machine Learning, pages: 369-376, (Editors: CE Brodley), ACM, New York, NY, USA, ICML, 2004, also appeared as MPI-TR 110 (inproceedings)

Abstract
We interpret several well-known algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithms can be described as kernel PCA on specially constructed Gram matrices, and illustrate the similarities and differences between the algorithms with representative examples.

PDF [BibTex]

PDF [BibTex]


Kernel Hebbian Algorithm for single-frame super-resolution

Kim, K., Franz, M., Schölkopf, B.

In Computer Vision - ECCV 2004, LNCS vol. 3024, pages: 135-149, (Editors: A Leonardis and H Bischof), Springer, Berlin, Germany, 8th European Conference on Computer Vision (ECCV), May 2004 (inproceedings)

Abstract
This paper presents a method for single-frame image super-resolution using an unsupervised learning technique. The required prior knowledge about the high-resolution images is obtained from Kernel Principal Component Analysis (KPCA). The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the {em Kernel Hebbian Algorithm}. By kernelizing the Generalized Hebbian Algorithm, one can iteratively estimate the Kernel Principal Components with only linear order memory complexity. The resulting super-resolution algorithm shows a comparable performance to the existing supervised methods on images containing faces and natural scenes.

PDF Web [BibTex]

PDF Web [BibTex]


Protein Functional Class Prediction with a Combined Graph

Shin, H., Tsuda, K., Schölkopf, B.

In Proceedings of the Korean Data Mining Conference, pages: 200-219, Proceedings of the Korean Data Mining Conference, 2004 (inproceedings)

Abstract
In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein-protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. However, since different graphs contain partly independent and partly complementary information about the problem at hand, one can enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to network output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The proposed method performs significantly better than the same algorithm trained on any single graph.

PDF [BibTex]

PDF [BibTex]


Warped Gaussian Processes

Snelson, E. Rasmussen, CE. Ghahramani, Z.

In Advances in Neural Information Processing Systems 16, pages: 337-344, (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We generalise the Gaussian process (GP) framework for regression by learning a nonlinear transformation of the GP outputs. This allows for non-Gaussian processes and non-Gaussian noise. The learning algorithm chooses a nonlinear transformation such that transformed data is well-modelled by a GP. This can be seen as including a preprocessing transformation as an integral part of the probabilistic modelling problem, rather than as an ad-hoc step. We demonstrate on several real regression problems that learning the transformation can lead to significantly better performance than using a regular GP, or a GP with a fixed transformation.

PDF Web [BibTex]

PDF Web [BibTex]


Learning from Labeled and Unlabeled Data Using Random Walks

Zhou, D., Schölkopf, B.

In Pattern Recognition, Proceedings of the 26th DAGM Symposium, pages: 237-244, (Editors: Rasmussen, C.E., H.H. Bülthoff, M.A. Giese and B. Schölkopf), Pattern Recognition, Proceedings of the 26th DAGM Symposium, 2004 (inproceedings)

Abstract
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled, and the remaining points are unlabeled. The goal is to predict the labels of the unlabeled points. Any supervised learning algorithm can be applied to this problem, for instance, Support Vector Machines (SVMs). The problem of our interest is if we can implement a classifier which uses the unlabeled data information in some way and has higher accuracy than the classifiers which use the labeled data only. Recently we proposed a simple algorithm, which can substantially benefit from large amounts of unlabeled data and demonstrates clear superiority to supervised learning methods. In this paper we further investigate the algorithm using random walks and spectral graph theory, which shed light on the key steps in this algorithm.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Distributed Command Execution

Stark, S., Berlin, M.

In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Abstract
Often you want to execute a command not only on one computer, but on several at once. For example, you might want to report the current statistics on a group of managed servers or update all of your web servers at once.

[BibTex]

[BibTex]


Object categorization with SVM: kernels for local features

Eichhorn, J., Chapelle, O.

(137), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

PDF [BibTex]

PDF [BibTex]


Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

(126), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.

PDF [BibTex]

PDF [BibTex]


Learning from Labeled and Unlabeled Data Using Random Walks

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled, and the remaining points are unlabeled. The goal is to predict the labels of the unlabeled points. Any supervised learning algorithm can be applied to this problem, for instance, Support Vector Machines (SVMs). The problem of our interest is if we can implement a classifier which uses the unlabeled data information in some way and has higher accuracy than the classifiers which use the labeled data only. Recently we proposed a simple algorithm, which can substantially benefit from large amounts of unlabeled data and demonstrates clear superiority to supervised learning methods. In this paper we further investigate the algorithm using random walks and spectral graph theory, which shed light on the key steps in this algorithm.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


m-Alternative-Forced-Choice: Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F., Hill, J., Wichmann, F.

7, pages: 118, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
We explored several ways to improve the efficiency of measuring psychometric functions without resorting to adaptive procedures. a) The number m of alternatives in an m-alternative-forced-choice (m-AFC) task improves the efficiency of the method of constant stimuli. b) When alternatives are presented simultaneously on different positions on a screen rather than sequentially time can be saved and memory load for the subject can be reduced. c) A touch-screen can further help to make the experimental procedure more intuitive. We tested these ideas in the measurement of contrast sensitivity and compared them to results obtained by sequential presentation in two-interval-forced-choice (2-IFC). Qualitatively all methods (m-AFC and 2-IFC) recovered the characterictic shape of the contrast sensitivity function in three subjects. The m-AFC paradigm only took about 60% of the time of the 2-IFC task. We tried m=2,4,8 and found 4-AFC to give the best model fits and 2-AFC to have the least bias.

Web [BibTex]

Web [BibTex]


Masking by plaid patterns revisited

Wichmann, F.

Experimentelle Psychologie. Beitr{\"a}ge zur 46. Tagung experimentell arbeitender Psychologen, 46, pages: 285, 2004 (poster)

[BibTex]

[BibTex]


Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

PDF [BibTex]


Injecting noise for analysing the stability of ICA components

Harmeling, S., Meinecke, F., Müller, K.

Signal Processing, 84(2):255-266, February 2004 (article)

Abstract
Usually, noise is considered to be destructive. We present a new method that constructively injects noise to assess the reliability and the grouping structure of empirical ICA component estimates. Our method can be viewed as a Monte-Carlo-style approximation of the curvature of some performance measure at the solution. Simulations show that the true root-mean-squared angle distances between the real sources and the source estimates can be approximated well by our method. In a toy experiment, we see that we are also able to reveal the underlying grouping structure of the extracted ICA components. Furthermore, an experiment with fetal ECG data demonstrates that our approach is useful for exploratory data analysis of real-world data.

PDF DOI [BibTex]

PDF DOI [BibTex]


Pattern Selection for SVM based "Futures Trading System"

Sun, J., Cho, S., Shin, H.

In Proc. of the Korean Data Mining Conference, pages: 175-183, Korean Data Mining Society Conference, April 2004 (inproceedings)

[BibTex]

[BibTex]


Fast Binary and Multi-Output Reduced Set Selection

Weston, J., Bakir, G.

(132), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2004 (techreport)

Abstract
We propose fast algorithms for reducing the number of kernel evaluations in the testing phase for methods such as Support Vector Machines (SVM) and Ridge Regression (RR). For non-sparse methods such as RR this results in significantly improved prediction time. For binary SVMs, which are already sparse in their expansion, the pay off is mainly in the cases of noisy or large-scale problems. However, we then further develop our method for multi-class problems where, after choosing the expansion to find vectors which describe all the hyperplanes jointly, we again achieve significant gains.

PostScript [BibTex]

PostScript [BibTex]


The p53 Oligomerization Domain: Sequence-Structure Relationships and the Design and Characterization of Altered Oligomeric States

Davison, TS.

University of Toronto, Canada, University of Toronto, Canada, 2004 (phdthesis)

[BibTex]

[BibTex]


Human Classification Behaviour Revisited by Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

7, pages: 134, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), Febuary 2004 (poster)

Abstract
We attempt to understand visual classication in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classication task. Human subjects classied the faces and their gender judgment, reaction time (RT) and condence rating (CR) were recorded for each face. RTs are longer for incorrect answers than for correct ones, high CRs are correlated with low classication errors and RTs decrease as the CRs increase. This results suggest that patterns difcult to classify need more computation by the brain than patterns easy to classify. Hyperplane learning algorithms such as Support Vector Machines (SVM), Relevance Vector Machines (RVM), Prototype learners (Prot) and K-means learners (Kmean) were used on the same classication task using the Principal Components of the texture and oweld representation of the faces. The classication performance of the learning algorithms was estimated using the face database with the true gender of the faces as labels, and also with the gender estimated by the subjects. Kmean yield a classication performance close to humans while SVM and RVM are much better. This surprising behaviour may be due to the fact that humans are trained on real faces during their lifetime while they were here tested on articial ones, while the algorithms were trained and tested on the same set of stimuli. We then correlated the human responses to the distance of the stimuli to the separating hyperplane (SH) of the learning algorithms. On the whole stimuli far from the SH are classied more accurately, faster and with higher condence than those near to the SH if we pool data across all our subjects and stimuli. We also nd three noteworthy results. First, SVMs and RVMs can learn to classify faces using the subjects' labels but perform much better when using the true labels. Second, correlating the average response of humans (classication error, RT or CR) with the distance to the SH on a face-by-face basis using Spearman's rank correlation coefcients shows that RVMs recreate human performance most closely in every respect. Third, the mean-of-class prototype, its popularity in neuroscience notwithstanding, is the least human-like classier in all cases examined.

Web [BibTex]

Web [BibTex]