64 results (BibTeX)

2002


Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

PostScript [BibTex]

2002

PostScript [BibTex]


Sampling Techniques for Kernel Methods

Achlioptas, D., McSherry, F., Schölkopf, B.

In Advances in neural information processing systems 14 , pages: 335-342, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We propose randomized techniques for speeding up Kernel Principal Component Analysis on three levels: sampling and quantization of the Gram matrix in training, randomized rounding in evaluating the kernel expansions, and random projections in evaluating the kernel itself. In all three cases, we give sharp bounds on the accuracy of the obtained approximations.

PDF Web [BibTex]

PDF Web [BibTex]


The leave-one-out kernel

Tsuda, K., Kawanabe, M.

In Artificial Neural Networks -- ICANN 2002, 2415, pages: 727-732, LNCS, (Editors: Dorronsoro, J. R.), Artificial Neural Networks -- ICANN, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Decision Boundary Pattern Selection for Support Vector Machines

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 33-41, Korean Data Mining Conference, May 2002 (inproceedings)

[BibTex]

[BibTex]


Global Geometry of SVM Classifiers

Zhou, D., Xiao, B., Zhou, H., Dai, R.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)

Abstract
We construct an geometry framework for any norm Support Vector Machine (SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions and solutions of SVM classifiers are constructed by a purely geometric fashion. In contrast with the optimization theory used in SVM classifiers, we have no complicated computations any more. Each step in our theory is guided by elegant geometric intuitions.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]


The Infinite Hidden Markov Model

Beal, MJ. Ghahramani, Z. Rasmussen, CE.

In Advances in Neural Information Processing Systems 14, pages: 577-584, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite - consider, for example, symbols being possible words appearing in English text.

PDF Web [BibTex]

PDF Web [BibTex]


Contrast discrimination with sinusoidal gratings of different spatial frequency

Bird, C., Henning, G., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1267-1273, 2002 (article)

Abstract
The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency and phase as the signal. The shape of the contrast increment threshold versus pedestal contrast (TvC) functions depend of the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the (TvC) functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s Law.

PDF [BibTex]

PDF [BibTex]


The contributions of color to recognition memory for natural scenes

Wichmann, F., Sharpe, L., Gegenfurtner, K.

Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3):509-520, May 2002 (article)

Abstract
The authors used a recognition memory paradigm to assess the influence of color information on visual memory for images of natural scenes. Subjects performed 5-10% better for colored than for black-and-white images independent of exposure duration. Experiment 2 indicated little influence of contrast once the images were suprathreshold, and Experiment 3 revealed that performance worsened when images were presented in color and tested in black and white, or vice versa, leading to the conclusion that the surface property color is part of the memory representation. Experiments 4 and 5 exclude the possibility that the superior recognition memory for colored images results solely from attentional factors or saliency. Finally, the recognition memory advantage disappears for falsely colored images of natural scenes: The improvement in recognition memory depends on the color congruence of presented images with learned knowledge about the color gamut found within natural scenes. The results can be accounted for within a multiple memory systems framework.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

[BibTex]

[BibTex]


Surface-slant-from-texture discrimination: Effects of slant level and texture type

Rosas, P., Wichmann, F., Wagemans, J.

Journal of Vision, 2(7):300, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
The problem of surface-slant-from-texture was studied psychophysically by measuring the performances of five human subjects in a slant-discrimination task with a number of different types of textures: uniform lattices, randomly displaced lattices, polka dots, Voronoi tessellations, orthogonal sinusoidal plaid patterns, fractal or 1/f noise, “coherent” noise and a “diffusion-based” texture (leopard skin-like). The results show: (1) Improving performance with larger slants for all textures. (2) A “non-symmetrical” performance around a particular slant characterized by a psychometric function that is steeper in the direction of the more slanted orientation. (3) For sufficiently large slants (66 deg) there are no major differences in performance between any of the different textures. (4) For slants at 26, 37 and 53 degrees, however, there are marked differences between the different textures. (5) The observed differences in performance across textures for slants up to 53 degrees are systematic within subjects, and nearly so across them. This allows a rank-order of textures to be formed according to their “helpfulness” — that is, how easy the discrimination task is when a particular texture is mapped on the surface. Polka dots tended to allow the best slant discrimination performance, noise patterns the worst up to the large slant of 66 degrees at which performance was almost independent of the particular texture chosen. Finally, our large number of 2AFC trials (approximately 2800 trials per texture across subjects) and associated tight confidence intervals may enable us to find out about which statistical properties of the textures could be responsible for surface-slant-from-texture estimation, with the ultimate goal of being able to predict observer performance for any arbitrary texture.

Web DOI [BibTex]

Web DOI [BibTex]


Modelling Contrast Transfer in Spatial Vision

Wichmann, F.

Journal of Vision, 2(10):7, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast, the results of which allow different models of contrast processing (e.g. energy versus gain-control models) to be critically assessed (Wichmann & Henning, 1999). Studies of detection and discrimination using pulse train stimuli in noise, on the other hand, make predictions about the number, position and properties of noise sources within the processing stream (Henning, Bird & Wichmann, 2002). Here I report modelling results combining data from both sinusoidal and pulse train experiments in and without noise to arrive at a more tightly constrained model of early spatial vision.

Web DOI [BibTex]

Web DOI [BibTex]


A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes

Bousquet, O.

C. R. Acad. Sci. Paris, Ser. I, 334, pages: 495-500, 2002 (article)

Abstract
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version \cite{Rio01b} of Talagrand's inequality \cite{Talagrand96} for equidistributed variables.

PDF PostScript [BibTex]


Numerical evolution of axisymmetric, isolated systems in general relativity

Frauendiener, J., Hein, M.

Physical Review D, 66, pages: 124004-124004, 2002 (article)

Abstract
We describe in this article a new code for evolving axisymmetric isolated systems in general relativity. Such systems are described by asymptotically flat space-times, which have the property that they admit a conformal extension. We are working directly in the extended conformal manifold and solve numerically Friedrich's conformal field equations, which state that Einstein's equations hold in the physical space-time. Because of the compactness of the conformal space-time the entire space-time can be calculated on a finite numerical grid. We describe in detail the numerical scheme, especially the treatment of the axisymmetry and the boundary.

GZIP [BibTex]

GZIP [BibTex]


A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

PDF [BibTex]

PDF [BibTex]


Marginalized kernels for biological sequences

Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 18(Suppl 1):268-275, 2002 (article)

PDF [BibTex]

PDF [BibTex]


Localized Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

In Proceedings of the 15th annual conference on Computational Learning Theory, pages: 44-58, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate the behaviour of global and local Rademacher averages. We present new error bounds which are based on the local averages and indicate how data-dependent local averages can be estimated without {it a priori} knowledge of the class at hand.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


A new discriminative kernel from probabilistic models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

In Advances in Neural Information Processing Systems 14, pages: 977-984, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
Recently, Jaakkola and Haussler proposed a method for constructing kernel functions from probabilistic models. Their so called \Fisher kernel" has been combined with discriminative classi ers such as SVM and applied successfully in e.g. DNA and protein analysis. Whereas the Fisher kernel (FK) is calculated from the marginal log-likelihood, we propose the TOP kernel derived from Tangent vectors Of Posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments our new discriminative TOP kernel compares favorably to the Fisher kernel.

PDF Web [BibTex]

PDF Web [BibTex]


k-NN based Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Proc. of the Korean Industrial Engineers Conference, pages: 645-651, Korean Industrial Engineers Conference, May 2002 (inproceedings)

[BibTex]

[BibTex]


Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Ideal 2002, pages: 97-103, (Editors: Yin, H. , N. Allinson, R. Freeman, J. Keane, S. Hubbard), Springer, Berlin, Germany, Third International Conference on Intelligent Data Engineering and Automated Learning, January 2002 (inproceedings)

Abstract
SVMs tend to take a very long time to train with a large data set. If "redundant" patterns are identified and deleted in pre-processing, the training time could be reduced significantly. We propose a k-nearest neighbors(k-NN) based pattern selection method. The method tries to select the patterns that are near the decision boundary and that are correctly labeled. The simulations over synthetic data sets showed promising results: (1) By converting a non-separable problem to a separable one, the search for an optimal error tolerance parameter became unnecessary. (2) SVM training time decreased by two orders of magnitude without any loss of accuracy. (3) The redundant SVs were substantially reduced.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Film Cooling: A Comparative Study of Different Heaterfoil Configurations for Liquid Crystals Experiments

Vogel, G. Graf, ABA. Weigand, B.

In ASME TURBO EXPO 2002, Amsterdam, GT-2002-30552, ASME TURBO EXPO, Amsterdam, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]


Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)

Web [BibTex]

Web [BibTex]


Real-Time Statistical Learning for Oculomotor Control and Visuomotor Coordination

Vijayakumar, S., Souza, A., Peters, J., Conradt, J., Rutkowski, T., Ijspeert, A., Nakanishi, J., Inoue, M., Shibata, T., Wiryo, A., Itti, L., Amari, S., Schaal, S.

(Editors: Becker, S. , S. Thrun, K. Obermayer), Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), December 2002 (poster)

Web [BibTex]

Web [BibTex]


Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

In Advances in Neural Information Processing Systems 14, pages: 609-616, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.

PDF Web [BibTex]

PDF Web [BibTex]


Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

PDF [BibTex]

PDF [BibTex]


Application of Monte Carlo Methods to Psychometric Function Fitting

Wichmann, F.

Proceedings of the 33rd European Conference on Mathematical Psychology, pages: 44, 2002 (poster)

Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. Here I describe methods to (1) fitting psychometric functions, (2) assessing goodness-of-fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them. First I describe a constrained maximum-likelihood method for parameter estimation. Using Monte-Carlo simulations I demonstrate that it is important to have a fitting method that takes stimulus-independent errors (or "lapses") into account. Second, a number of goodness-of-fit tests are introduced. Because psychophysical data sets are usually rather small I advocate the use of Monte Carlo resampling techniques that do not rely on asymptotic theory for goodness-of-fit assessment. Third, a parametric bootstrap is employed to estimate the variability of fitted parameters and derived quantities such as thresholds and slopes. I describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested without incurring too high a cost in computation time. Finally I describe how the methods can be extended to test hypotheses concerning the form and shape of several psychometric functions. Software describing the methods is available (http://www.bootstrap-software.com/psignifit/), as well as articles describing the methods in detail (Wichmann&Hill, Perception&Psychophysics, 2001a,b).

[BibTex]

[BibTex]


Detection and discrimination in pink noise

Wichmann, F., Henning, G.

5, pages: 100, 5. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2002 (poster)

Abstract
Much of our information about early spatial vision comes from detection experiments involving low-contrast stimuli, which are not, perhaps, particularly "natural" stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast whilst keeping the number of unknown parameters comparatively small. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on our display was measured using a high-performance digital camera (Photometrics) and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband 1-D "pink" noise made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

Web [BibTex]

Web [BibTex]


Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

Web [BibTex]

Web [BibTex]


Stability and Generalization

Bousquet, O., Elisseeff, A.

Journal of Machine Learning Research, 2, pages: 499-526, 2002 (article)

Abstract
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

PostScript Web DOI [BibTex]

PostScript Web DOI [BibTex]


Subspace information criterion for non-quadratic regularizers – model selection for sparse regressors

Tsuda, K., Sugiyama, M., Müller, K.

IEEE Trans Neural Networks, 13(1):70-80, 2002 (article)

PDF [BibTex]

PDF [BibTex]


Modeling splicing sites with pairwise correlations

Arita, M., Tsuda, K., Asai, K.

Bioinformatics, 18(Suppl 2):27-34, 2002 (article)

PDF [BibTex]

PDF [BibTex]


Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)

Web [BibTex]

Web [BibTex]


Observations on the Nyström Method for Gaussian Process Prediction

Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)

Abstract
A number of methods for speeding up Gaussian Process (GP) prediction have been proposed, including the Nystr{\"o}m method of Williams and Seeger (2001). In this paper we focus on two issues (1) the relationship of the Nystr{\"o}m method to the Subset of Regressors method (Poggio and Girosi 1990; Luo and Wahba, 1997) and (2) understanding in what circumstances the Nystr{\"o}m approximation would be expected to provide a good approximation to exact GP regression.

PostScript [BibTex]

PostScript [BibTex]


Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


Combining sensory Information to Improve Visualization

Ernst, M., Banks, M., Wichmann, F., Maloney, L., Bülthoff, H.

In Proceedings of the Conference on Visualization ‘02 (VIS ‘02), pages: 571-574, (Editors: Moorhead, R. , M. Joy), IEEE, Piscataway, NJ, USA, IEEE Conference on Visualization (VIS '02), October 2002 (inproceedings)

Abstract
Seemingly effortlessly the human brain reconstructs the three-dimensional environment surrounding us from the light pattern striking the eyes. This seems to be true across almost all viewing and lighting conditions. One important factor for this apparent easiness is the redundancy of information provided by the sensory organs. For example, perspective distortions, shading, motion parallax, or the disparity between the two eyes' images are all, at least partly, redundant signals which provide us with information about the three-dimensional layout of the visual scene. Our brain uses all these different sensory signals and combines the available information into a coherent percept. In displays visualizing data, however, the information is often highly reduced and abstracted, which may lead to an altered perception and therefore a misinterpretation of the visualized data. In this panel we will discuss mechanisms involved in the combination of sensory information and their implications for simulations using computer displays, as well as problems resulting from current display technology such as cathode-ray tubes.

PDF Web [BibTex]

PDF Web [BibTex]


Gender Classification of Human Faces

Graf, A., Wichmann, F.

In Biologically Motivated Computer Vision, pages: 1-18, (Editors: Bülthoff, H. H., S.W. Lee, T. A. Poggio and C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Phase information in the recognition of natural images

Braun, D., Wichmann, F., Gegenfurtner, K.

Perception, 31(ECVP Abstract Supplement):133, 25th European Conference on Visual Perception, August 2002 (poster)

Abstract
Fourier phase plays an important role in determining global image structure. For example, when the phase spectrum of an image of a flower is swapped with that of a tank, we usually perceive a tank, even though the amplitude spectrum is still that of the flower. Similarly, when the phase spectrum of an image is randomly swapped across frequencies, that is its Fourier energy is randomly distributed over the image, the resulting image becomes impossible to recognise. Our goal was to evaluate the effect of phase manipulations in a quantitative manner. Subjects viewed two images of natural scenes, one of which contained an animal (the target) embedded in the background. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was the independent variable, uniformly distributed between 0° and ±180°. Subjects were remarkably resistant to phase noise. Even with ±120° noise, subjects were still 75% correct. The proportion of correct answers closely followed the correlation between original and noise-distorted images. Thus it appears as if it was not the global phase information per se that determines our percept of natural images, but rather the effect of phase on local image features.

Web [BibTex]

Web [BibTex]


Perfusion Quantification using Gaussian Process Deconvolution

Andersen, IK. Szymkowiak, A. Rasmussen, CE. Hanson, LG. Marstrand, JR. Larsson, HBW. Hansen, LK.

Magnetic Resonance in Medicine, (48):351-361, 2002 (article)

Abstract
The quantification of perfusion using dynamic susceptibility contrast MR imaging requires deconvolution to obtain the residual impulse-response function (IRF). Here, a method using a Gaussian process for deconvolution, GPD, is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as using data from healthy volunteers. It is shown that GPD is comparable to SVD variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal to noise ratio increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

Journal of Machine Learning Research, 3, pages: 363-396, (Editors: Long, P.), 2002 (article)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of n experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into k+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size m. Since k >> m, the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying log n for choosing the best expert in each section we first pay log (n choose m) bits in the bounds for identifying the pool of m experts and then log m bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

[BibTex]

[BibTex]


A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals

Weber, B., Burger, C., Biro, P., Buck, A.

Eur J Nucl Med Mol Imaging, 29, pages: 319-323, 2002 (article)

[BibTex]

[BibTex]


Some Local Measures of Complexity of Convex Hulls and Generalization Bounds

Bousquet, O., Koltchinskii, V., Panchenko, D.

In Proceedings of the 15th annual conference on Computational Learning Theory, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate measures of complexity of function classes based on continuity moduli of Gaussian and Rademacher processes. For Gaussian processes, we obtain bounds on the continuity modulus on the convex hull of a function class in terms of the same quantity for the class itself. We also obtain new bounds on generalization error in terms of localized Rademacher complexities. This allows us to prove new results about generalization performance for convex hulls in terms of characteristics of the base class. As a byproduct, we obtain a simple proof of some of the known bounds on the entropy of convex hulls.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Algorithms for Learning Function Distinguishable Regular Languages

Fernau, H., Radl, A.

In Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pages: 64-73, (Editors: Caelli, T. , A. Amin, R. P.W. Duin, M. Kamel, D. de Ridder), Springer, Berlin, Germany, Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, August 2002 (inproceedings)

Abstract
Function distinguishable languages were introduced as a new methodology of defining characterizable subclasses of the regular languages which are learnable from text. Here, we give details on the implementation and the analysis of the corresponding learning algorithms. We also discuss problems which might occur in practical applications.

PDF DOI [BibTex]

PDF DOI [BibTex]


Microarrays: How Many Do You Need?

Zien, A., Fluck, J., Zimmer, R., Lengauer, T.

In RECOMB 2002, pages: 321-330, ACM Press, New York, NY, USA, Sixth Annual International Conference on Research in Computational Molecular Biology, April 2002 (inproceedings)

Abstract
We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. Current knowlegde seems to suffice for the construction of models that are realistic with respect to searches for individual differentially expressed genes. Such models allow to investigate the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class; the fold changes in expression; the detection sensitivity of the microarrays; and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at http://cartan.gmd.de/~zien/classsize/ for fine tuning simulations to their particular actualities. Since the situation can be assumed to be very similar for large scale proteomics and metabolomics studies, our methods and results might also apply there.

Web DOI [BibTex]

Web DOI [BibTex]


Contrast discrimination with pulse-trains in pink noise

Henning, G., Bird, C., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1259-1266, 2002 (article)

Abstract
Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-c/deg pulse-train, or line gratings, contained at least 8 harmonics all at equal contrast, they were no more detectable than their most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

PDF [BibTex]

PDF [BibTex]


Insect-Inspired Estimation of Self-Motion

Franz, MO. Chahl, JS.

In Biologically Motivated Computer Vision, (2525):171-180, LNCS, (Editors: Bülthoff, H.H. , S.W. Lee, T.A. Poggio, C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]