38 results (BibTeX)

1998


SVMs — a practical consequence of learning theory

Schölkopf, B.

IEEE Intelligent Systems and their Applications, 13(4):18-21, July 1998 (article)

Abstract
My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

PDF Web DOI [BibTex]

1998

PDF Web DOI [BibTex]


No role for motion blur in either motion detection or motion based image segmentation

Wichmann, F., Henning, G.

Journal of the Optical Society of America A, 15 (2), pages: 297-306, 1998 (article)

Abstract
Determined the influence of high-spatial-frequency losses induced by motion on motion detection and on motion-based image segmentation. Motion detection and motion-based segmentation tasks were performed with either spectrally low-pass or spectrally broadband stimuli. Performance on these tasks was compared with a condition having no motion but in which form differences mimicked the perceptual loss of high spatial frequencies produced by motion. This allowed the relative salience of motion and motion-induced blur to be determined. Neither image segmentation nor motion detection was sensitive to the high-spatial-frequency content of the stimuli. Thus the change in perceptual form produced in moving stimuli is not normally used as a cue either for motion detection or for motion-based image segmentation in ordinary situations.

PDF [BibTex]

PDF [BibTex]


Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces.

Schölkopf, B., Knirsch, P., Smola, A., Burges, C.

In Mustererkennung 1998, pages: 125-132, Informatik aktuell, (Editors: P Levi and M Schanz and R-J Ahlers and F May), Springer, Berlin, Germany, 20th DAGM-Symposium, 1998 (inproceedings)

Abstract
Kernel-based learning methods provide their solutions as expansions in terms of a kernel. We consider the problem of reducing the computational complexity of evaluating these expansions by approximating them using fewer terms. As a by-product, we point out a connection between clustering and approximation in reproducing kernel Hilbert spaces generated by a particular class of kernels.

Web [BibTex]

Web [BibTex]


Generalization bounds and learning rates for Regularized principal manifolds

Smola, A., Williamson, R., Schölkopf, B.

NeuroCOLT, 1998, NeuroColt2-TR 1998-027 (techreport)

[BibTex]

[BibTex]


Masking by plaid patterns: effects of presentation time and mask contrast

Wichmann, F., Henning, G.

pages: 115, 1. T{\"u}binger Wahrnehmungskonferenz (TWK 98), February 1998 (poster)

Abstract
Most current models of early spatial vision comprise of sets of orientation- and spatial-frequency selective filters with our without limited non-linear interactions amongst different subsets of the filters. The performance of human observers and of such models for human spatial vision were compared in experiments using maskers with two spatial frequencies (plaid masks). The detectability of horizontally orientated sinusoidal signals at 3.02 c/deg was measured in standard 2AFC-tasks in the presence of plaid patterns with two-components at the same spatial frequency as the signal but at different orientations (+/- 15, 30, 45, and 75 deg from the signal) and with varying contrasts (1.0, 6.25 and 25.0% contrast). In addition, the temporal envelope of the stimulus presentation was either a rectangular pulse of 19.7 msec duration, or a temporal Hanning window of 1497 msec.Threshold elevation varied with plaid component orientation, peaked +/- 30 deg from the signal where nearly a log unit threshold elevation for the 25.0% contrast plaid was observed. For plaids with 1.0% contrast we observed significant facilitation even with plaids whose components were 75 deg from that of the signal. Elevation factors were somewhat lower for the short stimulus presentation time but were still significant (up to a factor of 5 or 6). Despite of the simple nature of the stimuli employed in this study-sinusoidal signal and plaid masks comprised of only two sinusoids-none of the current models of early spatial vision can fully account for all the data gathered.

Web [BibTex]

Web [BibTex]


Eine beweistheoretische Anwendung der

Harmeling, S.

Biologische Kybernetik, Westfälische Wilhelms-Universität Münster, Münster, May 1998 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

Neural Computation, 10(5):1299-1319, July 1998 (article)

Abstract
A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

Web DOI [BibTex]

Web DOI [BibTex]


Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.

Autonomous Robots, 5(1):111-125, March 1998 (article)

Abstract
We present a purely vision-based scheme for learning a topological representation of an open environment. The system represents selected places by local views of the surrounding scene, and finds traversable paths between them. The set of recorded views and their connections are combined into a graph model of the environment. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. In robot experiments, we demonstrate that complex visual exploration and navigation tasks can thus be performed without using metric information.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


PET with 18fluorodeoxyglucose and hexamethylpropylene amine oxime SPECT in late whiplash syndrome

Bicik, I., Radanov, B., Schaefer, N., Dvorak, J., Blum, B., Weber, B., Burger, C., von Schulthess, G., Buck, A.

Neurology, 51, pages: 345-350, 1998 (article)

[BibTex]

[BibTex]


Changes of cerebral blood flow during short-term exposure to normobaric hypoxia

Buck, A., Schirlo, C., Jasinsky, V., Weber, B., Burger, C., von Schulthess, G., Koller, E., Pavlicek, V.

J Cereb Blood Flow Metab, 18, pages: 906-910, 1998 (article)

[BibTex]

[BibTex]


Kernel PCA pattern reconstruction via approximate pre-images.

Schölkopf, B., Mika, S., Smola, A., Rätsch, G., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 147-152, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]


Generalization Bounds for Convex Combinations of Kernel Functions

Smola, A., Williamson, R., Schölkopf, B.

Royal Holloway College, 1998 (techreport)

[BibTex]

[BibTex]


Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators

Williamson, R., Smola, A., Schölkopf, B.

(19), NeuroCOLT, 1998, Accepted for publication in IEEE Transactions on Information Theory (techreport)

[BibTex]

[BibTex]


A bootstrap method for testing hypotheses concerning psychometric functions

Hill, N., Wichmann, F.

1998 (poster)

Abstract
Whenever psychometric functions are used to evaluate human performance on some task, it is valuable to examine not only the threshold and slope values estimated from the original data, but also the expected variability in those measures. This allows psychometric functions obtained in two experimental conditions to be compared statistically. We present a method for estimating the variability of thresholds and slopes of psychometric functions. This involves a maximum-likelihood fit to the data using a three-parameter mathematical function, followed by Monte Carlo simulation using the first fit as a generating function for the simulations. The variability of the function's parameters can then be estimated (as shown by Maloney, 1990), as can the variability of the threshold value (Foster & Bischof, 1997). We will show how a simple development of this procedure can be used to test the significance of differences between (a) the thresholds, and (b) the slopes of two psychometric functions. Further, our method can be used to assess the assumptions underlying the original fit, by examining how goodness-of-fit differs in simulation from its original value. In this way data sets can be identified as being either too noisy to be generated by a binomial observer, or significantly "too good to be true." All software is written in MATLAB and is therefore compatible across platforms, with the option of accelerating performance using MATLAB's plug-in binaries, or "MEX" files.

[BibTex]


On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion

Smola, A., Schölkopf, B.

Algorithmica, 22(1-2):211-231, September 1998 (article)

Abstract
We present a kernel-based framework for pattern recognition, regression estimation, function approximation, and multiple operator inversion. Adopting a regularization-theoretic framework, the above are formulated as constrained optimization problems. Previous approaches such as ridge regression, support vector methods, and regularization networks are included as special cases. We show connections between the cost function and some properties up to now believed to apply to support vector machines only. For appropriately chosen cost functions, the optimal solution of all the problems described above can be found by solving a simple quadratic programming problem.

PDF DOI [BibTex]


The connection between regularization operators and support vector kernels.

Smola, A., Schölkopf, B., Müller, K.

Neural Networks, 11(4):637-649, June 1998 (article)

Abstract
n this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green‘s Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a by-product we show that a large number of radial basis functions, namely conditionally positive definite functions, may be used as support vector kernels.

PDF DOI [BibTex]

PDF DOI [BibTex]


Prior knowledge in support vector kernels

Schölkopf, B., Simard, P., Smola, A., Vapnik, V.

In Advances in Neural Information Processing Systems 10, pages: 640-646 , (Editors: M Jordan and M Kearns and S Solla ), MIT Press, Cambridge, MA, USA, Eleventh Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


Qualitative Modeling for Data Miner’s Requirements

Shin, H., Jhee, W.

In Proc. of the Korean Management Information Systems, pages: 65-73, Conference on the Korean Management Information Systems, April 1998 (inproceedings)

[BibTex]

[BibTex]


Quantization Functionals and Regularized PrincipalManifolds

Smola, A., Mika, S., Schölkopf, B.

NeuroCOLT, 1998, NC2-TR-1998-028 (techreport)

[BibTex]

[BibTex]


Support Vector Machines for Image Classification

Chapelle, O.

Biologische Kybernetik, Ecole Normale Superieure de Lyon, 1998 (diplomathesis)

GZIP [BibTex]

GZIP [BibTex]


Qualitative Modeling for Data Miner‘s Requirement

Shin, H.

Biologische Kybernetik, Hong-Ik University, Seoul, Korea, February 1998, Written in Korean (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]


Navigation mit Schnappschüssen

Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H., Zell, A.

In Mustererkennung 1998, pages: 421-428, (Editors: P Levi and R-J Ahlers and F May and M Schanz), Springer, Berlin, Germany, 20th DAGM-Symposium, October 1998 (inproceedings)

Abstract
Es wird ein biologisch inspirierter Algorithmus vorgestellt, mit dem sich ein Ort wiederfinden l{\"a}sst, an dem vorher eine 360-Grad-Ansicht der Umgebung aufgenommen wurde. Die Zielrichtung wird aus der Verschiebung der Bildposition der umgebenden Landmarken im Vergleich zum Schnappschuss berechnet. Die Konvergenzeigenschaften des Algorithmus werden mathematisch untersucht und auf mobilen Robotern getestet.

PDF Web [BibTex]

PDF Web [BibTex]


From regularization operators to support vector kernels

Smola, A., Schölkopf, B.

In Advances in Neural Information Processing Systems 10, pages: 343-349, (Editors: M Jordan and M Kearns and S Solla), MIT Press, Cambridge, MA, USA, 11th Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


Book Review: An Introduction to Fuzzy Logic for Practical Applications

Peters, J.

K{\"u}nstliche Intelligenz (KI), 98(4):60-60, November 1998 (article)

[BibTex]

[BibTex]


Support vector machines

Hearst, M., Dumais, S., Osman, E., Platt, J., Schölkopf, B.

IEEE Intelligent Systems and their Applications, 13(4):18-28, July 1998 (article)

Abstract
My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Support Vector methods in learning and feature extraction

Schölkopf, B., Smola, A., Müller, K., Burges, C., Vapnik, V.

Ninth Australian Conference on Neural Networks, pages: 72-78, (Editors: T. Downs, M. Frean and M. Gallagher), 1998 (talk)

[BibTex]

[BibTex]


Convex Cost Functions for Support Vector Regression

Smola, A., Schölkopf, B., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 99-104, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]


Support-Vektor-Lernen

Schölkopf, B.

In Ausgezeichnete Informatikdissertationen 1997, pages: 135-150, (Editors: G Hotz and H Fiedler and P Gorny and W Grass and S Hölldobler and IO Kerner and R Reischuk), Teubner Verlag, Stuttgart, 1998 (inbook)

[BibTex]

[BibTex]


Nonlinearities and the pedestal effect

Wichmann, F., Henning, G., Ploghaus, A.

Perception, 27, pages: S86, 1998 (poster)

Abstract
Psychophysical and physiological evidence suggests that luminance patterns are independently analysed in "channels" responding to different bands of spatial frequency. There are, however, interactions among stimuli falling well outside the usual estimates of channels' bandwidths (Henning, Hertz, and Broadbent, (1975). Vision Res., 15, 887-899). We examined whether the masking results of Henning et al. are consistent with independent channels. We postulated, before the channels, a point non-linearity which would introduce distortion products that might produce the observed interactions between stimuli two octaves apart in spatial frequency. Standard 2-AFC masking experiments determined whether possible distortion products of a 4.185 c/deg masking sinusoid revealed their presence through effects on the detection of a sinusoidal signal at the frequency of the second harmonic of the masker-8.37 c/deg. The signal and masker were horizontally orientated and the signal was in-phase, out-of-phase, or in quadrature with the putative second-order distortion product of the masker. Significant interactions between signal and masker were observed: for a wide range of masker contrasts, signal detection was facilitated by the masking stimulus. However, the shapes of the functions relating detection performance to masker contrast, as well as the effects of relative phase, were inconsistent with the notion that distortion products were responsible for the interactions observed.

[BibTex]

[BibTex]


Where did I take that snapshot? Scene-based homing by image matching

Franz, M., Schölkopf, B., Bülthoff, H.

Biological Cybernetics, 79(3):191-202, October 1998 (article)

Abstract
In homing tasks, the goal is often not marked by visible objects but must be inferred from the spatial relation to the visual cues in the surrounding scene. The exact computation of the goal direction would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. However, if prior assumptions about typical distance distributions are used, a snapshot taken at the goal suffices to compute the goal direction from the current view. We show that most existing approaches to scene-based homing implicitly assume an isotropic landmark distribution. As an alternative, we propose a homing scheme that uses parameterized displacement fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that both approximations do not prevent the schemes from approaching the goal with arbitrary accuracy, but lead to different errors in the computed goal direction. Mobile robot experiments are used to test the theoretical predictions and to demonstrate the practical feasibility of the new approach.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Übersicht durch Übersehen

Schölkopf, B.

Frankfurter Allgemeine Zeitung , Wissenschaftsbeilage, March 1998 (misc)

[BibTex]

[BibTex]


The moon tilt illusion

Schölkopf, B.

Perception, 27(10):1229-1232, August 1998 (article)

Abstract
Besides the familiar moon illusion [eg Hershenson, 1989 The Moon illusion (Hillsdale, NJ: Lawrence Erlbaum Associates)], wherein the moon appears bigger when it is close to the horizon, there is a less known illusion which causes the moon‘s illuminated side to appear turned away from the direction of the sun. An experiment documenting the effect is described, and a possible explanation is put forward.

Web DOI [BibTex]

Web DOI [BibTex]


Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome.

Davison, T., Yin, P., Nie, E., Kay, C., CH, .

Oncogene, 17(5):651-656, August 1998 (article)

Abstract
Recently two germline mutations in the oligomerization domain of p53 have been identified in patients with Li-Fraumeni and Li-Fraumeni-like Syndromes. We have used biophysical and biochemical methods to characterize these two mutants in order to better understand their functional defects and the role of the p53 oligomerization domain (residues 325-355) in oncogenesis. We find that residues 310-360 of the L344P mutant are monomeric, apparently unfolded and cannot interact with wild-type (WT) p53. The full length L344P protein is unable to bind sequence specifically to DNA and is therefore an inactive, but not a dominant negative mutant. R337C, on the other hand, can form dimers and tetramers, can hetero-oligomerize with WTp53 and can bind to a p53 consensus element. However, the thermal stability of R337C is much lower than that of WTp53 and at physiological temperatures more than half of this mutant is less than tetrameric. Thus, the R337C mutant retains some functional activity yet leads to a predisposition to cancer, suggesting that even partial inactivation of p53 oligomerization is sufficient for accelerated tumour progression.

Web [BibTex]


Funktionelle Magnetresonanztomographie in der psychopathologischen Forschung.

Spitzer, M., Kammer, T., Bellemann, M., Brix, G., Layer, B., Maier, S., Kischka, U., Gückel, F.

Fortschritte der Neurologie Psychiatrie, 66, pages: 241-258, 1998 (article)

Abstract
Mental disorders are characterised by psychopathological symptoms which correspond to functional brain states. Functional magnetic resonance imaging (fMRI) is used for the non-invasive study of cerebral activation patterns in man. First of all, the neurobiological principles and presuppositions of the method are outlined. Results from the Heidelberg imaging lab on several simple sensorimotor tasks as well as higher cognitive functions, such as working and semantic memory, are then presented. Thereafter, results from preliminary fMRI studies of psychopathological symptoms are discussed, with emphasis on hallucinations, psychomotoric phenomena, emotions, as well as obsessions and compulsions. Functional MRI is limited by the physics underlying the method, as well as by practical constraints regarding its use in conjunction with mentally ill patients. Within this framework, the problems of signal-to-noise ratio, data analysis strategies, motion correction, and neurovascular coupling are considered. Because of the rapid development of the field of fMRI, maps of higher cognitive functions and their respective pathology seem to be coming within easy reach.

[BibTex]

[BibTex]


Support vector regression with automatic accuracy control.

Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.

In ICANN'98, pages: 111-116, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, International Conference on Artificial Neural Networks (ICANN'98), 1998 (inproceedings)

[BibTex]

[BibTex]


General cost functions for support vector regression.

Smola, A., Schölkopf, B., Müller, K.

In Ninth Australian Conference on Neural Networks, pages: 79-83, (Editors: T Downs and M Frean and M Gallagher), 9th Australian Conference on Neural Networks (ACNN'98), 1998 (inproceedings)

[BibTex]

[BibTex]


Asymptotically optimal choice of varepsilon-loss for support vector machines.

Smola, A., Murata, N., Schölkopf, B., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 105-110, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]


Support Vector Machine Reference Manual

Saunders, C., Stitson, M., Weston, J., Bottou, L., Schölkopf, B., Smola, A.

(CSD-TR-98-03), Department of Computer Science, Royal Holloway, University of London, 1998 (techreport)

PostScript [BibTex]

PostScript [BibTex]