Header logo is ei


2016


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

link (url) [BibTex]

2016

link (url) [BibTex]


no image
Consistent Kernel Mean Estimation for Functions of Random Variables

Simon-Gabriel*, C. J., Ścibior*, A., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016, *joint first authors (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B. K., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Local-utopia Policy Selection for Multi-objective Reinforcement Learning

Parisi, S., Blank, A., Viernickel, T., Peters, J.

In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages: 1-7, IEEE, December 2016 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Advances in Neural Information Processing Systems 29, pages: 1426-1434, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Imitation Learning of Context-Dependent Motor Skills

Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Demonstration Based Trajectory Optimization for Generalizable Robot Motions

Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Deep Spiking Networks for Model-based Planning in Humanoids

Tanneberg, D., Paraschos, A., Peters, J., Rueckert, E.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 656-661, IEEE, November 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Anticipative Interaction Primitives for Human-Robot Collaboration

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, pages: 325-330, November 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unifying distillation and privileged information

Lopez-Paz, D., Schölkopf, B., Bottou, L., Vapnik, V.

International Conference on Learning Representations (ICLR), November 2016 (conference)

Arxiv [BibTex]

Arxiv [BibTex]


no image
Adaptive Training Strategies for BCIs

Sharma, D., Tanneberg, D., Grosse-Wentrup, M., Peters, J., Rueckert, E.

Cybathlon Symposium, October 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

Xiao, L., Wang, J., Heidrich, W., Hirsch, M.

Computer Vision - ECCV 2016, Lecture Notes in Computer Science, LNCS 9907, Part III, pages: 734-749, (Editors: Bastian Leibe, Jiri Matas, Nicu Sebe and Max Welling), Springer, October 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies

Osa, T., Peters, J., Neumann, G.

International Symposium on Experimental Robotics (ISER), 1, pages: 160-172, Springer Proceedings in Advanced Robotics, (Editors: Dana Kulic, Yoshihiko Nakamura, Oussama Khatib and Gentiane Venture), Springer, October 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data

van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3928-3934, IEEE, October 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 3920-3927, IEEE, October 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Active Tactile Object Exploration with Gaussian Processes

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4925-4930, IEEE, October 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

6th Workshop on Brain-Machine Interface Systems at IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, October 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), September 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities

Kohlschuetter, J., Peters, J., Rueckert, E.

XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), pages: 668-672, (Editors: Kyriacou, E., Christofides, S., and Pattichis, C. S.), September 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes

Grau-Moya, J, Leibfried, F, Genewein, T, Braun, DA

Machine Learning and Knowledge Discovery in Databases, pages: 475-491, Lecture Notes in Computer Science; 9852, Springer, Cham, Switzerland, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML PKDD), September 2016 (conference)

Abstract
Information-theoretic principles for learning and acting have been proposed to solve particular classes of Markov Decision Problems. Mathematically, such approaches are governed by a variational free energy principle and allow solving MDP planning problems with information-processing constraints expressed in terms of a Kullback-Leibler divergence with respect to a reference distribution. Here we consider a generalization of such MDP planners by taking model uncertainty into account. As model uncertainty can also be formalized as an information-processing constraint, we can derive a unified solution from a single generalized variational principle. We provide a generalized value iteration scheme together with a convergence proof. As limit cases, this generalized scheme includes standard value iteration with a known model, Bayesian MDP planning, and robust planning. We demonstrate the benefits of this approach in a grid world simulation.

DOI [BibTex]

DOI [BibTex]


no image
Bidirektionale Interaktion zwischen Mensch und Roboter beim Bewegungslernen (BIMROB)

Kollegger, G., Ewerton, M., Peters, J., Wiemeyer, J.

11. Symposium der DVS Sportinformatik, September 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M. S. M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition - 38th German Conference (GCPR), 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, September 2016 (conference)

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction

Weber, P., Rueckert, E., Calandra, R., Peters, J., Beckerle, P.

25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 99-104, August 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Experimental and causal view on information integration in autonomous agents

Geiger, P., Hofmann, K., Schölkopf, B.

Proceedings of the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA), pages: 21-28, (Editors: Hatzilygeroudis, I. and Palade, V.), August 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Manifold Gaussian Processes for Regression

Calandra, R., Peters, J., Rasmussen, C. E., Deisenroth, M. P.

International Joint Conference on Neural Networks (IJCNN), pages: 3338-3345, IEEE, July 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills

Maeda, G., Ewerton, M., Koert, D., Peters, J.

IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
The Mondrian Kernel

Balog, M., Lakshminarayanan, B., Ghahramani, Z., Roy, D. M., Teh, Y. W.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (conference)

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


no image
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data

Weichwald, S., Gretton, A., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 6th International Workshop on Pattern Recognition in NeuroImaging (PRNI 2016), June 2016 (conference)

PDF Arxiv Code DOI [BibTex]

PDF Arxiv Code DOI [BibTex]


no image
Efficient Large-scale Approximate Nearest Neighbor Search on the GPU

Wieschollek, P., Wang, O., Sorkine-Hornung, A., Lensch, H. P. A.

29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2027 - 2035, IEEE, June 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Domain Adaptation with Conditional Transferable Components

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Schölkopf, B.

Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2839-2848, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M.-F. and Weinberger, K. Q.), June 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Causal Interaction Network of Multivariate Hawkes Processes

Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), June 2016, poster presentation (conference)

[BibTex]

[BibTex]


no image
Bounded Rational Decision-Making in Feedforward Neural Networks

Leibfried, F, Braun, D

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 407-416, June 2016 (conference)

Abstract
Bounded rational decision-makers transform sensory input into motor output under limited computational resources. Mathematically, such decision-makers can be modeled as information-theoretic channels with limited transmission rate. Here, we apply this formalism for the first time to multilayer feedforward neural networks. We derive synaptic weight update rules for two scenarios, where either each neuron is considered as a bounded rational decision-maker or the network as a whole. In the update rules, bounded rationality translates into information-theoretically motivated types of regularization in weight space. In experiments on the MNIST benchmark classification task for handwritten digits, we show that such information-theoretic regularization successfully prevents overfitting across different architectures and attains results that are competitive with other recent techniques like dropout, dropconnect and Bayes by backprop, for both ordinary and convolutional neural networks.

[BibTex]

[BibTex]


no image
A Kernel Test for Three-Variable Interactions with Random Processes

Rubenstein, P. K., Chwialkowski, K. P., Gretton, A.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (conference)

PDF Supplement Arxiv [BibTex]

PDF Supplement Arxiv [BibTex]


no image
Continuous Deep Q-Learning with Model-based Acceleration

Gu, S., Lillicrap, T., Sutskever, I., Levine, S.

Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2829-2838, JMLR Workshop and Conference Proceedings, (Editors: Maria-Florina Balcan and Kilian Q. Weinberger), JMLR.org, June 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 10 09 at 11.42.49
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
The Arrow of Time in Multivariate Time Serie

Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 33rd International Conference on Machine Learning (ICML), 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, June 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection

Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
MuProp: Unbiased Backpropagation for Stochastic Neural Networks

Gu, S., Levine, S., Sutskever, I., Mnih, A.

4th International Conference on Learning Representations (ICLR), May 2016 (conference)

Arxiv [BibTex]

Arxiv [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Autofocusing-based correction of B0 fluctuation-induced ghosting

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Movement Primitives with Multiple Phase Parameters

Ewerton, M., Maeda, G., Neumann, G., Kisner, V., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE International Conference on Robotics and Automation (ICRA), pages: 201-206, IEEE, May 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
An Improved Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Förster, C., Just, J., M., S., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Proceedings of the Sixth International BCI Meeting, pages: 44, (Editors: Müller-Putz, G. R. and Huggins, J. E. and Steyrl, D.), BCI, May 2016 (conference)

DOI [BibTex]

DOI [BibTex]