Header logo is ei


2019


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

[BibTex]

2019

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

[BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

[BibTex]

[BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

[BibTex]

[BibTex]

2010


no image
Approximate Inference in Graphical Models

Hennig, P.

University of Cambridge, November 2010 (phdthesis)

Web [BibTex]

2010

Web [BibTex]


no image
Bayesian Inference and Experimental Design for Large Generalised Linear Models

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2010 (phdthesis)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inferring High-Dimensional Causal Relations using Free Probability Theory

Zscheischler, J.

Humboldt Universität Berlin, Germany, August 2010 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Predictive Representations For Sequential Decision Making Under Uncertainty

Boularias, A.

Université Laval, Quebec, Canada, July 2010 (phdthesis)

Abstract
The problem of making decisions is ubiquitous in life. This problem becomes even more complex when the decisions should be made sequentially. In fact, the execution of an action at a given time leads to a change in the environment of the problem, and this change cannot be predicted with certainty. The aim of a decision-making process is to optimally select actions in an uncertain environment. To this end, the environment is often modeled as a dynamical system with multiple states, and the actions are executed so that the system evolves toward a desirable state. In this thesis, we proposed a family of stochastic models and algorithms in order to improve the quality of of the decision-making process. The proposed models are alternative to Markov Decision Processes, a largely used framework for this type of problems. In particular, we showed that the state of a dynamical system can be represented more compactly if it is described in terms of predictions of certain future events. We also showed that even the cognitive process of selecting actions, known as policy, can be seen as a dynamical system. Starting from this observation, we proposed a panoply of algorithms, all based on predictive policy representations, in order to solve different problems of decision-making, such as decentralized planning, reinforcement learning, or imitation learning. We also analytically and empirically demonstrated that the proposed approaches lead to a decrease in the computational complexity and an increase in the quality of the decisions, compared to standard approaches for planning and learning under uncertainty.

PDF [BibTex]


no image
Semi-supervised Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data

Shelton, J.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, Germany, July 2010 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Quantitative Evaluation of MR-based Attenuation Correction for Positron Emission Tomography (PET)

Mantlik, F.

Biologische Kybernetik, Universität Mannheim, Germany, March 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
Finding Gene-Gene Interactions using Support Vector Machines

Rakitsch, B.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
Structural and Relational Data Mining for Systems Biology Applications

Georgii, E.

Eberhard Karls Universität Tübingen, Germany , 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Population Coding in the Visual System: Statistical Methods and Theory

Macke, J.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

[BibTex]


no image
Bayesian Methods for Neural Data Analysis

Gerwinn, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Clustering with Neighborhood Graphs

Maier, M.

Universität des Saarlandes, Saarbrücken, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Detecting and modeling time shifts in microarray time series data applying Gaussian processes

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, 2010 (thesis)

[BibTex]

[BibTex]


no image
Detecting the mincut in sparse random graphs

Köhler, R.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
A wider view on encoding and decoding in the visual brain-computer interface speller system

Martens, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

2009


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

PDF [BibTex]

2009

PDF [BibTex]


no image
A PAC-Bayesian Approach to Structure Learning

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]

2002


no image
Nonlinear Multivariate Analysis with Geodesic Kernels

Kuss, M.

Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

GZIP [BibTex]

2002

GZIP [BibTex]


no image
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


no image
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]

2001


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

PostScript [BibTex]

2001

PostScript [BibTex]


no image
Cerebellar Control of Robot Arms

Peters, J.

Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)

[BibTex]

[BibTex]


no image
On Unsupervised Learning of Mixtures of Markov Sources

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]

2000


no image
Three-dimensional reconstruction of planar scenes

Urbanek, M.

Biologische Kybernetik, INP Grenoble, Warsaw University of Technology, September 2000 (diplomathesis)

Abstract
For a planar scene, we propose an algorithm to estimate its 3D structure. Homographies between corresponding planes are employed in order to recover camera motion parameters - between camera positions from which images of the scene were taken. Cases of one- and multiple- corresponding planes present on the scene are distinguished. Solutions are proposed for both cases.

ZIP [BibTex]

2000

ZIP [BibTex]


no image
Intelligence as a Complex System

Zhou, D.

Biologische Kybernetik, 2000 (phdthesis)

[BibTex]

[BibTex]


no image
Neural Networks in Robot Control

Peters, J.

Biologische Kybernetik, Fernuniversität Hagen, Hagen, Germany, 2000 (diplomathesis)

[BibTex]

[BibTex]