Header logo is ei


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

PDF [BibTex]

2013

PDF [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

[BibTex]

2011


no image
Optimization for Machine Learning

Sra, S., Nowozin, S., Wright, S.

pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

Abstract
The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Web [BibTex]

2011

Web [BibTex]


no image
Bayesian Time Series Models

Barber, D., Cemgil, A., Chiappa, S.

pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF [BibTex]

PDF [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

[BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

Web [BibTex]

Web [BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

PDF [BibTex]

PDF [BibTex]


no image
Handbook of Statistical Bioinformatics

Lu, H., Schölkopf, B., Zhao, H.

pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

PDF [BibTex]

PDF [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

[BibTex]

[BibTex]

2006


no image
A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-06-54), Univ. of Texas, Austin, December 2006 (techreport)

PDF [BibTex]

2006

PDF [BibTex]


no image
Probabilistic inference for solving (PO)MDPs

Toussaint, M., Harmeling, S., Storkey, A.

(934), School of Informatics, University of Edinburgh, December 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Minimal Logical Constraint Covering Sets

Sinz, F., Schölkopf, B.

(155), Max Planck Institute for Biological Cybernetics, Tübingen, December 2006 (techreport)

Abstract
We propose a general framework for computing minimal set covers under class of certain logical constraints. The underlying idea is to transform the problem into a mathematical programm under linear constraints. In this sense it can be seen as a natural extension of the vector quantization algorithm proposed by Tipping and Schoelkopf. We show which class of logical constraints can be cast and relaxed into linear constraints and give an algorithm for the transformation.

PDF [BibTex]

PDF [BibTex]


no image
New Methods for the P300 Visual Speller

Biessmann, F.

(1), (Editors: Hill, J. ), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Geometric Analysis of Hilbert Schmidt Independence criterion based ICA contrast function

Shen, H., Jegelka, S., Gretton, A.

(PA006080), National ICT Australia, Canberra, Australia, October 2006 (techreport)

Web [BibTex]

Web [BibTex]


no image
Extraction of visual features from natural video data using Slow Feature Analysis

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2006 (diplomathesis)

Abstract
Das Forschungsprojekt NeuRoBot hat das un{\"u}berwachte Erlernen einer neuronal inspirierten Steuerungsarchitektur zum Ziel, und zwar unter den Randbedingungen biologischer Plausibilit{\"a}t und der Benutzung einer Kamera als einzigen Sensor. Visuelle Merkmale, die ein angemessenes Abbild der Umgebung liefern, sind unerl{\"a}sslich, um das Ziel kollisionsfreier Navigation zu erreichen. Zeitliche Koh{\"a}renz ist ein neues Lernprinzip, das in der Lage ist, Erkenntnisse aus der Biologie des Sehens zu reproduzieren. Es wird durch die Beobachtung motiviert, dass die “Sensoren” der Retina auf deutlich k{\"u}rzeren Zeitskalen variieren als eine abstrakte Beschreibung. Zeitliche Langsamkeitsanalyse l{\"o}st das Problem, indem sie zeitlich langsam ver{\"a}nderliche Signale aus schnell ver{\"a}nderlichen Eingabesignalen extrahiert. Eine Verallgemeinerung auf Signale, die nichtlinear von den Eingaben abh{\"a}ngen, ist durch die Anwendung des Kernel-Tricks m{\"o}glich. Das einzig benutzte Vorwissen ist die zeitliche Glattheit der gewonnenen Signale. In der vorliegenden Diplomarbeit wird Langsamkeitsanalyse auf Bildausschnitte von Videos einer Roboterkamera und einer Simulationsumgebung angewendet. Zuallererst werden mittels Parameterexploration und Kreuzvalidierung die langsamst m{\"o}glichen Funktionen bestimmt. Anschließend werden die Merkmalsfunktionen analysiert und einige Ansatzpunkte f{\"u}r ihre Interpretation angegeben. Aufgrund der sehr großen Datens{\"a}tze und der umfangreichen Berechnungen behandelt ein Großteil dieser Arbeit auch Aufwandsbetrachtungen und Fragen der effizienten Berechnung. Kantendetektoren in verschiedenen Phasen und mit haupts{\"a}chlich horizontaler Orientierung stellen die wichtigsten aus der Analyse hervorgehenden Funktionen dar. Eine Anwendung auf konkrete Navigationsaufgaben des Roboters konnte bisher nicht erreicht werden. Eine visuelle Interpretation der erlernten Merkmale ist jedoch durchaus gegeben.

PDF [BibTex]

PDF [BibTex]


no image
Semi-Supervised Learning

Chapelle, O., Schölkopf, B., Zien, A.

pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

Abstract
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Web [BibTex]

Web [BibTex]


no image
An Online-Computation Approach to Optimal Finite-Horizon State-Feedback Control of Nonlinear Stochastic Systems

Deisenroth, MP.

Biologische Kybernetik, Universität Karlsruhe (TH), Karlsruhe, Germany, August 2006 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
A tutorial on spectral clustering

von Luxburg, U.

(149), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. Nevertheless, on the first glance spectral clustering looks a bit mysterious, and it is not obvious to see why it works at all and what it really does. This article is a tutorial introduction to spectral clustering. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

PDF [BibTex]

PDF [BibTex]


no image
Towards the Inference of Graphs on Ordered Vertexes

Zien, A., Raetsch, G., Ong, C.

(150), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs.

PDF [BibTex]

PDF [BibTex]


no image
Object Classification using Local Image Features

Nowozin, S.

Biologische Kybernetik, Technical University of Berlin, Berlin, Germany, May 2006 (diplomathesis)

Abstract
Object classification in digital images remains one of the most challenging tasks in computer vision. Advances in the last decade have produced methods to repeatably extract and describe characteristic local features in natural images. In order to apply machine learning techniques in computer vision systems, a representation based on these features is needed. A set of local features is the most popular representation and often used in conjunction with Support Vector Machines for classification problems. In this work, we examine current approaches based on set representations and identify their shortcomings. To overcome these shortcomings, we argue for extending the set representation into a graph representation, encoding more relevant information. Attributes associated with the edges of the graph encode the geometric relationships between individual features by making use of the meta data of each feature, such as the position, scale, orientation and shape of the feature region. At the same time all invariances provided by the original feature extraction method are retained. To validate the novel approach, we use a standard subset of the ETH-80 classification benchmark.

PDF [BibTex]

PDF [BibTex]


no image
Nonnegative Matrix Approximation: Algorithms and Applications

Sra, S., Dhillon, I.

Univ. of Texas, Austin, May 2006 (techreport)

[BibTex]

[BibTex]


no image
An Automated Combination of Sequence Motif Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

(146), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006 (techreport)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer. We propose an elegant and fully automated approach to building a prediction system for protein subcellular localization. We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We further propose a multiclass support vector machine method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we generalize our method to optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

(147), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006, The version in the "Large Scale Kernel Machines" book is more up to date. (techreport)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and there is no reason for ignoring it. Moreover, from the primal point of view, new families of algorithms for large scale SVM training can be investigated.

PDF [BibTex]

PDF [BibTex]


no image
Kernel PCA for Image Compression

Huhle, B.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning

Kuss, M.

Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Cross-Validation Optimization for Structured Hessian Kernel Methods

Seeger, M., Chapelle, O.

Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2006 (techreport)

Abstract
We address the problem of learning hyperparameters in kernel methods for which the Hessian of the objective is structured. We propose an approximation to the cross-validation log likelihood whose gradient can be computed analytically, solving the hyperparameter learning problem efficiently through nonlinear optimization. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels or to large datasets. When applied to the problem of multi-way classification, our method scales linearly in the number of classes and gives rise to state-of-the-art results on a remote imaging task.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes for Machine Learning

Rasmussen, CE., Williams, CKI.

pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

Abstract
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Web [BibTex]

Web [BibTex]


no image
Semigroups applied to transport and queueing processes

Radl, A.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, 2006 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Local Alignment Kernels for Protein Homology Detection

Saigo, H.

Biologische Kybernetik, Kyoto University, Kyoto, Japan, 2006 (phdthesis)

[BibTex]

[BibTex]


Thumb xl screen shot 2012 06 06 at 11.31.38 am
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]

2005


no image
Popper, Falsification and the VC-dimension

Corfield, D., Schölkopf, B., Vapnik, V.

(145), Max Planck Institute for Biological Cybernetics, November 2005 (techreport)

PDF [BibTex]

2005

PDF [BibTex]


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
A Combinatorial View of Graph Laplacians

Huang, J.

(144), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2005 (techreport)

Abstract
Discussions about different graph Laplacian, mainly normalized and unnormalized versions of graph Laplacian, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence for the normalized Laplacian. In this paper, we analyze different variants of graph Laplacians directly from the ways solving the original graph partitioning problem. The graph partitioning problem is a well-known combinatorial NP hard optimization problem. The spectral solutions provide evidence that normalized Laplacian encodes more reasonable considerations for graph partitioning. We also provide some examples to show their differences.

[BibTex]

[BibTex]


no image
Beyond Pairwise Classification and Clustering Using Hypergraphs

Zhou, D., Huang, J., Schölkopf, B.

(143), Max Planck Institute for Biological Cybernetics, August 2005 (techreport)

Abstract
In many applications, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. An alternative for these applications is to analyze complex relationships among data directly, without the need to first represent the complex relationships into pairwise ones. A natural way to describe complex relationships is to use hypergraphs. A hypergraph is a graph in which edges can connect more than two vertices. Thus we consider learning from a hypergraph, and develop a general framework which is applicable to classification and clustering for complex relational data. We have applied our framework to real-world web classification problems and obtained encouraging results.

PDF [BibTex]

PDF [BibTex]


no image
Liver Perfusion using Level Set Methods

Nowozin, S.

Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Generalized Nonnegative Matrix Approximations using Bregman Divergences

Sra, S., Dhillon, I.

Univ. of Texas at Austin, June 2005 (techreport)

[BibTex]

[BibTex]