Header logo is ei


2014


no image
Modeling the polygenic architecture of complex traits

Rakitsch, Barbara

Eberhard Karls Universität Tübingen, November 2014 (phdthesis)

[BibTex]

2014

[BibTex]


no image
A Novel Causal Inference Method for Time Series

Shajarisales, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (mastersthesis)

PDF [BibTex]

PDF [BibTex]


no image
Single-Source Domain Adaptation with Target and Conditional Shift

Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion Imaging

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

[BibTex]

[BibTex]


no image
Fuzzy Fibers: Uncertainty in dMRI Tractography

Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.

In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

[BibTex]

[BibTex]


no image
A global analysis of extreme events and consequences for the terrestrial carbon cycle

Zscheischler, J.

Diss. No. 22043, ETH Zurich, Switzerland, ETH Zurich, Switzerland, 2014 (phdthesis)

[BibTex]

[BibTex]


no image
Nonconvex Proximal Splitting with Computational Errors

Sra, S.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

[BibTex]

[BibTex]


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

[BibTex]

[BibTex]


no image
The Feasibility of Causal Discovery in Complex Systems: An Examination of Climate Change Attribution and Detection

Lacosse, E.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Discovery in the Presence of Time-Dependent Relations or Small Sample Size

Huang, B.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Active Learning - Modern Learning Theory

Balcan, M., Urner, R.

In Encyclopedia of Algorithms, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Analysis of Distance Functions in Graphs

Alamgir, M.

University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)

[BibTex]

[BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

PDF [BibTex]

2013

PDF [BibTex]


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

[BibTex]

[BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

[BibTex]

[BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

[BibTex]

2011


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

Abstract
We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.

PDF Web [BibTex]

2011

PDF Web [BibTex]


no image
Statistical Learning Theory: Models, Concepts, and Results

von Luxburg, U., Schölkopf, B.

In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

Abstract
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms and is arguably one of the most beautifully developed branches of artificial intelligence in general. It originated in Russia in the 1960s and gained wide popularity in the 1990s following the development of the so-called Support Vector Machine (SVM), which has become a standard tool for pattern recognition in a variety of domains ranging from computer vision to computational biology. Providing the basis of new learning algorithms, however, was not the only motivation for developing statistical learning theory. It was just as much a philosophical one, attempting to answer the question of what it is that allows us to draw valid conclusions from empirical data. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We do not assume that the reader has a deep background in mathematics, statistics, or computer science. Given the nature of the subject matter, however, some familiarity with mathematical concepts and notations and some intuitive understanding of basic probability is required. There exist many excellent references to more technical surveys of the mathematics of statistical learning theory: the monographs by one of the founders of statistical learning theory ([Vapnik, 1995], [Vapnik, 1998]), a brief overview over statistical learning theory in Section 5 of [Sch{\"o}lkopf and Smola, 2002], more technical overview papers such as [Bousquet et al., 2003], [Mendelson, 2003], [Boucheron et al., 2005], [Herbrich and Williamson, 2002], and the monograph [Devroye et al., 1996].

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

[BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI

Ihme, K., Zander, TO.

In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
When using eye movements for cursor control in human-computer interaction (HCI), it may be difficult to find an appropriate substitute for the click operation. Most approaches make use of dwell times. However, in this context the so-called Midas-Touch-Problem occurs which means that the system wrongly interprets fixations due to long processing times or spontaneous dwellings of the user as command. Lately it has been shown that brain-computer interface (BCI) input bears good prospects to overcome this problem using imagined hand movements to elicit a selection. The current approach tries to develop this idea further by exploring potential signals for the use in a passive BCI, which would have the advantage that the brain signals used as input are generated automatically without conscious effort of the user. To explore event-related potentials (ERPs) giving information about the user’s intention to select an object, 32-channel electroencephalography (EEG) was recorded from ten participants interacting with a dwell-time-based system. Comparing ERP signals during the dwell time with those occurring during fixations on a neutral cross hair, a sustained negative slow cortical potential at central electrode sites was revealed. This negativity might be a contingent negative variation (CNV) reflecting the participants’ anticipation of the upcoming selection. Offline classification suggests that the CNV is detectable in single trial (mean accuracy 74.9 %). In future, research on the CNV should be accomplished to ensure its stable occurence in human-computer interaction and render possible its use as a potential substitue for the click operation.

DOI [BibTex]

DOI [BibTex]


no image
Kernel Methods in Bioinformatics

Borgwardt, KM.

In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
Kernel methods have now witnessed more than a decade of increasing popularity in the bioinformatics community. In this article, we will compactly review this development, examining the areas in which kernel methods have contributed to computational biology and describing the reasons for their success.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Cue Combination: Beyond Optimality

Rosas, P., Wichmann, F.

In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

[BibTex]

[BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

[BibTex]

[BibTex]

2007


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

PDF [BibTex]

2007

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Web [BibTex]

Web [BibTex]


no image
Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason to ignore this possibility. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approximation Methods for Gaussian Process Regression

Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.

In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
A wealth of computationally efficient approximation methods for Gaussian process regression have been recently proposed. We give a unifying overview of sparse approximations, following Quiñonero-Candela and Rasmussen (2005), and a brief review of approximate matrix-vector multiplication methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Altun, Y., Smola, A.

In Predicting Structured Data, pages: 283-300, Advances in neural information processing systems, (Editors: BakIr, G. H., T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V.N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
In this paper we study the problem of estimating conditional probability distributions for structured output prediction tasks in Reproducing Kernel Hilbert Spaces. More specically, we prove decomposition results for undirected graphical models, give constructions for kernels, and show connections to Gaussian Process classi- cation. Finally we present ecient means of solving the optimization problem and apply this to label sequence learning. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

Web [BibTex]

Web [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how nonconvexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals

Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Joint Kernel Maps

Weston, J., Bakir, G., Bousquet, O., Mann, T., Noble, W., Schölkopf, B.

In Predicting Structured Data, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Web [BibTex]

Web [BibTex]


no image
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach

Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

PDF [BibTex]

PDF [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, MA.

Biologische Kybernetik, Georg-August-Universität Göttingen, Göttingen, Germany, July 2007 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Probabilistic Structure Calculation

Rieping, W., Habeck, M., Nilges, M.

In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Applications of Kernel Machines to Structured Data

Eichhorn, J.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

DOI [BibTex]

DOI [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

[BibTex]

[BibTex]