Header logo is ei


2015


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2006


no image
A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-06-54), Univ. of Texas, Austin, December 2006 (techreport)

PDF [BibTex]

2006

PDF [BibTex]


no image
Probabilistic inference for solving (PO)MDPs

Toussaint, M., Harmeling, S., Storkey, A.

(934), School of Informatics, University of Edinburgh, December 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Minimal Logical Constraint Covering Sets

Sinz, F., Schölkopf, B.

(155), Max Planck Institute for Biological Cybernetics, Tübingen, December 2006 (techreport)

Abstract
We propose a general framework for computing minimal set covers under class of certain logical constraints. The underlying idea is to transform the problem into a mathematical programm under linear constraints. In this sense it can be seen as a natural extension of the vector quantization algorithm proposed by Tipping and Schoelkopf. We show which class of logical constraints can be cast and relaxed into linear constraints and give an algorithm for the transformation.

PDF [BibTex]

PDF [BibTex]


no image
New Methods for the P300 Visual Speller

Biessmann, F.

(1), (Editors: Hill, J. ), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Geometric Analysis of Hilbert Schmidt Independence criterion based ICA contrast function

Shen, H., Jegelka, S., Gretton, A.

(PA006080), National ICT Australia, Canberra, Australia, October 2006 (techreport)

Web [BibTex]

Web [BibTex]


no image
A tutorial on spectral clustering

von Luxburg, U.

(149), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. Nevertheless, on the first glance spectral clustering looks a bit mysterious, and it is not obvious to see why it works at all and what it really does. This article is a tutorial introduction to spectral clustering. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

PDF [BibTex]

PDF [BibTex]


no image
Towards the Inference of Graphs on Ordered Vertexes

Zien, A., Raetsch, G., Ong, C.

(150), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs.

PDF [BibTex]

PDF [BibTex]


no image
Nonnegative Matrix Approximation: Algorithms and Applications

Sra, S., Dhillon, I.

Univ. of Texas, Austin, May 2006 (techreport)

[BibTex]

[BibTex]


no image
An Automated Combination of Sequence Motif Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

(146), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006 (techreport)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer. We propose an elegant and fully automated approach to building a prediction system for protein subcellular localization. We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We further propose a multiclass support vector machine method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we generalize our method to optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

(147), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006, The version in the "Large Scale Kernel Machines" book is more up to date. (techreport)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and there is no reason for ignoring it. Moreover, from the primal point of view, new families of algorithms for large scale SVM training can be investigated.

PDF [BibTex]

PDF [BibTex]


no image
Cross-Validation Optimization for Structured Hessian Kernel Methods

Seeger, M., Chapelle, O.

Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2006 (techreport)

Abstract
We address the problem of learning hyperparameters in kernel methods for which the Hessian of the objective is structured. We propose an approximation to the cross-validation log likelihood whose gradient can be computed analytically, solving the hyperparameter learning problem efficiently through nonlinear optimization. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels or to large datasets. When applied to the problem of multi-way classification, our method scales linearly in the number of classes and gives rise to state-of-the-art results on a remote imaging task.

PDF Web [BibTex]

PDF Web [BibTex]


Thumb xl screen shot 2012 06 06 at 11.31.38 am
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]

2005


no image
Popper, Falsification and the VC-dimension

Corfield, D., Schölkopf, B., Vapnik, V.

(145), Max Planck Institute for Biological Cybernetics, November 2005 (techreport)

PDF [BibTex]

2005

PDF [BibTex]


no image
A Combinatorial View of Graph Laplacians

Huang, J.

(144), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2005 (techreport)

Abstract
Discussions about different graph Laplacian, mainly normalized and unnormalized versions of graph Laplacian, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence for the normalized Laplacian. In this paper, we analyze different variants of graph Laplacians directly from the ways solving the original graph partitioning problem. The graph partitioning problem is a well-known combinatorial NP hard optimization problem. The spectral solutions provide evidence that normalized Laplacian encodes more reasonable considerations for graph partitioning. We also provide some examples to show their differences.

[BibTex]

[BibTex]


no image
Beyond Pairwise Classification and Clustering Using Hypergraphs

Zhou, D., Huang, J., Schölkopf, B.

(143), Max Planck Institute for Biological Cybernetics, August 2005 (techreport)

Abstract
In many applications, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. An alternative for these applications is to analyze complex relationships among data directly, without the need to first represent the complex relationships into pairwise ones. A natural way to describe complex relationships is to use hypergraphs. A hypergraph is a graph in which edges can connect more than two vertices. Thus we consider learning from a hypergraph, and develop a general framework which is applicable to classification and clustering for complex relational data. We have applied our framework to real-world web classification problems and obtained encouraging results.

PDF [BibTex]

PDF [BibTex]


no image
Generalized Nonnegative Matrix Approximations using Bregman Divergences

Sra, S., Dhillon, I.

Univ. of Texas at Austin, June 2005 (techreport)

[BibTex]

[BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.

(140), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2005 (techreport)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on HSIC do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

PDF [BibTex]

PDF [BibTex]


no image
Consistency of Kernel Canonical Correlation Analysis

Fukumizu, K., Bach, F., Gretton, A.

(942), Institute of Statistical Mathematics, 4-6-7 Minami-azabu, Minato-ku, Tokyo 106-8569 Japan, June 2005 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Approximate Inference for Robust Gaussian Process Regression

Kuss, M., Pfingsten, T., Csato, L., Rasmussen, C.

(136), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2005 (techreport)

Abstract
Gaussian process (GP) priors have been successfully used in non-parametric Bayesian regression and classification models. Inference can be performed analytically only for the regression model with Gaussian noise. For all other likelihood models inference is intractable and various approximation techniques have been proposed. In recent years expectation-propagation (EP) has been developed as a general method for approximate inference. This article provides a general summary of how expectation-propagation can be used for approximate inference in Gaussian process models. Furthermore we present a case study describing its implementation for a new robust variant of Gaussian process regression. To gain further insights into the quality of the EP approximation we present experiments in which we compare to results obtained by Markov chain Monte Carlo (MCMC) sampling.

PDF [BibTex]

PDF [BibTex]


no image
Maximum-Margin Feature Combination for Detection and Categorization

BakIr, G., Wu, M., Eichhorn, J.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2005 (techreport)

Abstract
In this paper we are concerned with the optimal combination of features of possibly different types for detection and estimation tasks in machine vision. We propose to combine features such that the resulting classifier maximizes the margin between classes. In contrast to existing approaches which are non-convex and/or generative we propose to use a discriminative model leading to convex problem formulation and complexity control. Furthermore we assert that decision functions should not compare apples and oranges by comparing features of different types directly. Instead we propose to combine different similarity measures for each different feature type. Furthermore we argue that the question: ”Which feature type is more discriminative for task X?” is ill-posed and show empirically that the answer to this question might depend on the complexity of the decision function.

PDF [BibTex]

PDF [BibTex]


no image
Towards a Statistical Theory of Clustering. Presented at the PASCAL workshop on clustering, London

von Luxburg, U., Ben-David, S.

Presented at the PASCAL workshop on clustering, London, 2005 (techreport)

Abstract
The goal of this paper is to discuss statistical aspects of clustering in a framework where the data to be clustered has been sampled from some unknown probability distribution. Firstly, the clustering of the data set should reveal some structure of the underlying data rather than model artifacts due to the random sampling process. Secondly, the more sample points we have, the more reliable the clustering should be. We discuss which methods can and cannot be used to tackle those problems. In particular we argue that generalization bounds as they are used in statistical learning theory of classification are unsuitable in a general clustering framework. We suggest that the main replacements of generalization bounds should be convergence proofs and stability considerations. This paper should be considered as a road map paper which identifies important questions and potentially fruitful directions for future research about statistical clustering. We do not attempt to present a complete statistical theory of clustering.

PDF [BibTex]

PDF [BibTex]


no image
Approximate Bayesian Inference for Psychometric Functions using MCMC Sampling

Kuss, M., Jäkel, F., Wichmann, F.

(135), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2005 (techreport)

Abstract
In psychophysical studies the psychometric function is used to model the relation between the physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. In this report we propose the use of Bayesian inference to extract the information contained in experimental data estimate the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition we discuss the parameterisation of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generate d data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation. The appendix provides a description of an implementation for the R environment for statistical computing and provides the code for reproducing the results discussed in the experiment section.

PDF [BibTex]

PDF [BibTex]

2002


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

PDF [BibTex]

2002

PDF [BibTex]


no image
Global Geometry of SVM Classifiers

Zhou, D., Xiao, B., Zhou, H., Dai, R.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)

Abstract
We construct an geometry framework for any norm Support Vector Machine (SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions and solutions of SVM classifiers are constructed by a purely geometric fashion. In contrast with the optimization theory used in SVM classifiers, we have no complicated computations any more. Each step in our theory is guided by elegant geometric intuitions.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

[BibTex]

[BibTex]


no image
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Observations on the Nyström Method for Gaussian Process Prediction

Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)

Abstract
A number of methods for speeding up Gaussian Process (GP) prediction have been proposed, including the Nystr{\"o}m method of Williams and Seeger (2001). In this paper we focus on two issues (1) the relationship of the Nystr{\"o}m method to the Subset of Regressors method (Poggio and Girosi 1990; Luo and Wahba, 1997) and (2) understanding in what circumstances the Nystr{\"o}m approximation would be expected to provide a good approximation to exact GP regression.

PostScript [BibTex]

PostScript [BibTex]

1999


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

Web [BibTex]

1999

Web [BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

[BibTex]

[BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

PostScript [BibTex]

PostScript [BibTex]

1998


no image
Generalization bounds and learning rates for Regularized principal manifolds

Smola, A., Williamson, R., Schölkopf, B.

NeuroCOLT, 1998, NeuroColt2-TR 1998-027 (techreport)

[BibTex]

1998

[BibTex]


no image
Generalization Bounds for Convex Combinations of Kernel Functions

Smola, A., Williamson, R., Schölkopf, B.

Royal Holloway College, 1998 (techreport)

[BibTex]

[BibTex]


no image
Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators

Williamson, R., Smola, A., Schölkopf, B.

(19), NeuroCOLT, 1998, Accepted for publication in IEEE Transactions on Information Theory (techreport)

[BibTex]

[BibTex]


no image
Quantization Functionals and Regularized PrincipalManifolds

Smola, A., Mika, S., Schölkopf, B.

NeuroCOLT, 1998, NC2-TR-1998-028 (techreport)

[BibTex]

[BibTex]


no image
Support Vector Machine Reference Manual

Saunders, C., Stitson, M., Weston, J., Bottou, L., Schölkopf, B., Smola, A.

(CSD-TR-98-03), Department of Computer Science, Royal Holloway, University of London, 1998 (techreport)

PostScript [BibTex]

PostScript [BibTex]