Header logo is ei


1997


no image
The view-graph approach to visual navigation and spatial memory

Mallot, H., Franz, M., Schölkopf, B., Bülthoff, H.

In Artificial Neural Networks: ICANN ’97, pages: 751-756, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.

PDF PDF DOI [BibTex]

1997

PDF PDF DOI [BibTex]


no image
Predicting time series with support vector machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial Neural Networks: ICANN’97, pages: 999-1004, (Editors: Schölkopf, B. , C.J.C. Burges, A.J. Smola), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting time series with support vectur machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial neural networks: ICANN ’97, pages: 999-1004, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Kernel principal component analysis

Schölkopf, B., Smola, A., Müller, K.

In Artificial neural networks: ICANN ’97, LNCS, vol. 1327, pages: 583-588, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

In Proceedings of the 4th European Conference on Artificial Life, (Eds.) P. Husbands, I. Harvey. MIT Press, Cambridge 1997, pages: 236-245, (Editors: P Husbands and I Harvey), MIT Press, Cambridge, MA, USA, 4th European Conference on Artificial Life (ECAL97), July 1997 (inproceedings)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

PDF [BibTex]

PDF [BibTex]


no image
Improving the accuracy and speed of support vector learning machines

Burges, C., Schölkopf, B.

In Advances in Neural Information Processing Systems 9, pages: 375-381, (Editors: M Mozer and MJ Jordan and T Petsche), MIT Press, Cambridge, MA, USA, Tenth Annual Conference on Neural Information Processing Systems (NIPS), May 1997 (inproceedings)

Abstract
Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for illposed problems . Against this very general backdrop any methods for improving the generalization performance, or for improving the speed in test phase of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem The method for improving generalization performance the "virtual support vector" method does so by incorporating known invariances of the problem This method achieves a drop in the error rate on 10.000 NIST test digit images of 1,4 % to 1 %. The method for improving the speed (the "reduced set" method) does so by approximating the support vector decision surface. We apply this method to achieve a factor of fifty speedup in test phase over the virtual support vector machine The combined approach yields a machine which is both 22 times faster than the original machine, and which has better generalization performance achieving 1,1 % error . The virtual support vector method is applicable to any SVM problem with known invariances The reduced set method is applicable to any support vector machine .

PDF Web [BibTex]

PDF Web [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

(46), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Febuary 1997 (techreport)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

[BibTex]

[BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages: 138-147, (Editors: Johnson, W.L.), ACM Press, New York, NY, USA, First International Conference on Autonomous Agents (AGENTS '97), Febuary 1997 (inproceedings)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Support vector learning

Schölkopf, B.

pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)

PDF GZIP [BibTex]

PDF GZIP [BibTex]