Header logo is ei


2013


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

Web [BibTex]

2013

Web [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

Web [BibTex]

Web [BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

20th Annual Scientific Meeting ISMRM, May 2012 (poster)

Abstract
Patient motion in the scanner is one of the most challenging problems in MRI. We propose a new retrospective motion correction method for which no tracking devices or specialized sequences are required. We seek the motion parameters such that the image gradients in the spatial domain become sparse. We then use these parameters to invert the motion and recover the sharp image. In our experiments we acquired 2D TSE images and 3D FLASH/MPRAGE volumes of the human head. Major quality improvements are possible in the 2D case and substantial improvements in the 3D case.

Web [BibTex]

Web [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Evaluation of a new, large field of view, small animal PET/MR system

Hossain, M., Wehrl, H., Lankes, K., Liu, C., Bezrukov, I., Reischl, G., Pichler, B.

50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

PDF [BibTex]


no image
Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Identifying endogenous rhythmic spatio-temporal patterns in micro-electrode array recordings

Besserve, M., Panagiotaropoulos, T., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

9th annual Computational and Systems Neuroscience meeting (Cosyne), 2012 (poster)

[BibTex]

[BibTex]


no image
Reconstruction using Gaussian mixture models

Joubert, P., Habeck, M.

2012 Gordon Research Conference on Three-Dimensional Electron Microscopy (3DEM), 2012 (poster)

Web [BibTex]

Web [BibTex]


no image
Support Measure Machines for Quasar Target Selection

Muandet, K.

Astro Imaging Workshop, 2012 (talk)

Abstract
In this talk I will discuss the problem of quasar target selection. The objects attributes in astronomy such as fluxes are often subjected to substantial and heterogeneous measurement uncertainties, especially for the medium-redshift between 2.2 and 3.5 quasars which is relatively rare and must be targeted down to g ~ 22 mag. Most of the previous works for quasar target selection includes UV-excess, kernel density estimation, a likelihood approach, and artificial neural network cannot directly deal with the heterogeneous input uncertainties. Recently, extreme deconvolution (XD) has been used to tackle this problem in a well-posed manner. In this work, we present a discriminative approach for quasar target selection that can deal with input uncertainties directly. To do so, we represent each object as a Gaussian distribution whose mean is the object's attribute vector and covariance is the given flux measurement uncertainty. Given a training set of Gaussian distributions, the support measure machines (SMMs) algorithm are trained and used to build the quasar targeting catalog. Preliminary results will also be presented. Joint work with Jo Bovy and Bernhard Sch{\"o}lkopf

Web [BibTex]


no image
PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics

Seldin, Y.

Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Lankes, K., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Learning from Distributions via Support Measure Machines

Muandet, K., Fukumizu, K., Dinuzzo, F., Schölkopf, B.

26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Juggling Increases Interhemispheric Brain Connectivity: A Visual and Quantitative dMRI Study.

Schultz, T., Gerber, P., Schmidt-Wilcke, T.

Vision, Modeling and Visualization (VMV), 2012 (poster)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

Web Web [BibTex]

Web Web [BibTex]


no image
The geometry and statistics of geometric trees

Feragen, A., Lo, P., de Bruijne, M., Nielsen, M., Lauze, F.

T{\"u}bIt day of bioinformatics, June, 2012 (poster)

[BibTex]

[BibTex]


no image
Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Pichler, B.

Molekulare Bildgebung (MoBi), 2012 (talk)

[BibTex]

[BibTex]


no image
Structured Apprenticeship Learning

Boularias, A., Kroemer, O., Peters, J.

European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis and Its Applications

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Therapy monitoring of patients with chronic sclerodermic graft-versus-host-disease using PET/MRI

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Bethge, W., Reimold, M., Pfannenberg, C., Pichler, B., Horger, M.

2012 SNM Annual Meeting, 2012 (poster)

Web [BibTex]

Web [BibTex]


no image
Centrality of the Mammalian Functional Brain Network

Besserve, M., Bartels, A., Murayama, Y., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (poster)

[BibTex]

[BibTex]


no image
Kernel Mean Embeddings of POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

21st Machine Learning Summer School , 2012 (poster)

[BibTex]

[BibTex]


no image
Kernel Bellman Equations in POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

[BibTex]

[BibTex]


no image
Semi-Supervised Domain Adaptation with Copulas

Lopez-Paz, D., Hernandez-Lobato, J., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2012 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Evaluation of Whole-Body MR-Based Attenuation Correction in Bone and Soft Tissue Lesions

Bezrukov, I., Mantlik, F., Schmidt, H., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (poster)

[BibTex]

[BibTex]


no image
Beta oscillations propagate as traveling waves in the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

[BibTex]

[BibTex]


no image
The PET Performance Measurements of A Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (poster)

[BibTex]

[BibTex]

2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF [BibTex]

PDF [BibTex]


no image
Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Reward-Weighted Regression

Peters, J.

NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph boosting for molecular QSAR analysis

Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Abstract
We propose a new boosting method that systematically combines graph mining and mathematical programming-based machine learning. Informative and interpretable subgraph features are greedily found by a series of graph mining calls. Due to our mathematical programming formulation, subgraph features and pre-calculated real-valued features are seemlessly integrated. We tested our algorithm on a quantitative structure-activity relationship (QSAR) problem, which is basically a regression problem when given a set of chemical compounds. In benchmark experiments, the prediction accuracy of our method favorably compared with the best results reported on each dataset.

Web [BibTex]

Web [BibTex]


no image
A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-06-54), Univ. of Texas, Austin, December 2006 (techreport)

PDF [BibTex]

PDF [BibTex]