Header logo is ei


2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF [BibTex]

PDF [BibTex]


no image
Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Reward-Weighted Regression

Peters, J.

NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph boosting for molecular QSAR analysis

Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Abstract
We propose a new boosting method that systematically combines graph mining and mathematical programming-based machine learning. Informative and interpretable subgraph features are greedily found by a series of graph mining calls. Due to our mathematical programming formulation, subgraph features and pre-calculated real-valued features are seemlessly integrated. We tested our algorithm on a quantitative structure-activity relationship (QSAR) problem, which is basically a regression problem when given a set of chemical compounds. In benchmark experiments, the prediction accuracy of our method favorably compared with the best results reported on each dataset.

Web [BibTex]

Web [BibTex]


no image
Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

Abstract
We propose a new approach to infer the causal structure that has generated the observed statistical dependences among n random variables. The idea is that the factorization of the joint measure of cause and effect into P(cause)P(effect|cause) leads typically to simpler conditionals than non-causal factorizations. To evaluate the complexity of the conditionals we have tried two methods. First, we have compared them to those which maximize the conditional entropy subject to the observed first and second moments since we consider the latter as the simplest conditionals. Second, we have fitted the data with conditional probability measures being exponents of functions in an RKHS space and defined the complexity by a Hilbert-space semi-norm. Such a complexity measure has several properties that are useful for our purpose. We describe some encouraging results with both methods applied to real-world data. Moreover, we have combined constraint-based approaches to causal discovery (i.e., methods using only information on conditional statistical dependences) with our method in order to distinguish between causal hypotheses which are equivalent with respect to the imposed independences. Furthermore, we compare the performance to Bayesian approaches to causal inference.

Web [BibTex]


no image
Learning Optimal EEG Features Across Time, Frequency and Space

Farquhar, J., Hill, J., Schölkopf, B.

NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-Supervised Learning

Zien, A.

Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images

Hofmann, M., Steinke, F., Judenhofer, M., Claussen, C., Schölkopf, B., Pichler, B.

IEEE Medical Imaging Conference, November 2006 (talk)

Abstract
A promising new combination in multimodality imaging is MR-PET, where the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET) are combined. Although many technical problems have recently been solved, it is still an open problem to determine the attenuation map from the available MR scan, as the MR intensities are not directly related to the attenuation values. One standard approach is an atlas registration where the atlas MR image is aligned with the patient MR thus also yielding an attenuation image for the patient. We also propose another approach, which to our knowledge has not been tried before: Using Support Vector Machines we predict the attenuation value directly from the local image information. We train this well-established machine learning algorithm using small image patches. Although both approaches sometimes yielded acceptable results, they also showed their specific shortcomings: The registration often fails with large deformations whereas the prediction approach is problematic when the local image structure is not characteristic enough. However, the failures often do not coincide and integration of both information sources is promising. We therefore developed a combination method extending Support Vector Machines to use not only local image structure but also atlas registered coordinates. We demonstrate the strength of this combination approach on a number of examples.

[BibTex]

[BibTex]


no image
Semi-Supervised Support Vector Machines and Application to Spam Filtering

Zien, A.

ECML Discovery Challenge Workshop, September 2006 (talk)

Abstract
After introducing the semi-supervised support vector machine (aka TSVM for "transductive SVM"), a few popular training strategies are briefly presented. Then the assumptions underlying semi-supervised learning are reviewed. Finally, two modern TSVM optimization techniques are applied to the spam filtering data sets of the workshop; it is shown that they can achieve excellent results, if the problem of the data being non-iid can be handled properly.

PDF Web [BibTex]


no image
Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti & Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

Web [BibTex]

Web [BibTex]


no image
Inferential Structure Determination: Probabilistic determination and validation of NMR structures

Habeck, M.

Gordon Research Conference on Computational Aspects of Biomolecular NMR, September 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Clark, R., Ossowski, S., Warthmann, N., Shinn, P., Frazer, K., Ecker, J., Huson, D., Weigel, D., Schölkopf, B., Rätsch, G.

2nd ISCB Student Council Symposium, August 2006 (talk)

Abstract
Analyzing resequencing array data using machine learning, we obtain a genome-wide inventory of polymorphisms in 20 wild strains of Arabidopsis thaliana, including 750,000 single nucleotide poly- morphisms (SNPs) and thousands of highly polymorphic regions and deletions. We thus provide an unprecedented resource for the study of natural variation in plants.

Web [BibTex]

Web [BibTex]


no image
Inferential structure determination: Overview and new developments

Habeck, M.

Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web DOI [BibTex]

Web DOI [BibTex]


no image
MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models

Rasmussen, C., Görür, D.

ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

Abstract
We compare the predictive accuracy of the Dirichlet Process Gaussian mixture models using conjugate and conditionally conjugate priors and show that better density models result from using the wider class of priors. We explore several MCMC schemes exploiting conditional conjugacy and show their computational merits on several multidimensional density estimation problems.

Web [BibTex]

Web [BibTex]


no image
Sampling for non-conjugate infinite latent feature models

Görür, D., Rasmussen, C.

(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

Abstract
Latent variable models are powerful tools to model the underlying structure in data. Infinite latent variable models can be defined using Bayesian nonparametrics. Dirichlet process (DP) models constitute an example of infinite latent class models in which each object is assumed to belong to one of the, mutually exclusive, infinitely many classes. Recently, the Indian buffet process (IBP) has been defined as an extension of the DP. IBP is a distribution over sparse binary matrices with infinitely many columns which can be used as a distribution for non-exclusive features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described, however requiring conjugacy restricts the use of IBP. We describe an MCMC algorithm for non-conjugate IBP models. Modelling the choice behaviour is an important topic in psychology, economics and related fields. Elimination by Aspects (EBA) is a choice model that assumes each alternative has latent features with associated weights that lead to the observed choice outcomes. We formulate a non-parametric version of EBA by using IBP as the prior over the latent binary features. We infer the features of objects that lead to the choice data by using our sampling scheme for inference.

PDF [BibTex]

PDF [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
An Inventory of Sequence Polymorphisms For Arabidopsis

Clark, R., Ossowski, S., Schweikert, G., Rätsch, G., Shinn, P., Zeller, G., Warthmann, N., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D.

17th International Conference on Arabidopsis Research, April 2006 (talk)

Abstract
We have used high-density oligonucleotide arrays to characterize common sequence variation in 20 wild strains of Arabidopsis thaliana that were chosen for maximal genetic diversity. Both strands of each possible SNP of the 119 Mb reference genome were represented on the arrays, which were hybridized with whole genome, isothermally amplified DNA to minimize ascertainment biases. Using two complementary approaches, a model based algorithm, and a newly developed machine learning method, we identified over 550,000 SNPs with a false discovery rate of ~ 0.03 (average of 1 SNP for every 216 bp of the genome). A heuristic algorithm predicted in addition ~700 highly polymorphic or deleted regions per accession. Over 700 predicted polymorphisms with major functional effects (e.g., premature stop codons, or deletions of coding sequence) were validated by dideoxy sequencing. Using this data set, we provide the first systematic description of the types of genes that harbor major effect polymorphisms in natural populations at moderate allele frequencies. The data also provide an unprecedented resource for the study of genetic variation in an experimentally tractable, multicellular model organism.

[BibTex]

[BibTex]


no image
Machine Learning and Applications in Biology

Shin, H.

6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

Abstract
The emergence of the fields of computational biology and bioinformatics has alleviated the burden of solving many biological problems, saving the time and cost required for experiments and also providing predictions that guide new experiments. Within computational biology, machine learning algorithms have played a central role in dealing with the flood of biological data. The goal of this tutorial is to raise awareness and comprehension of machine learning so that biologists can properly match the task at hand to the corresponding analytical approach. We start by categorizing biological problem settings and introduce the general machine learning schemes that fit best to each or these categories. We then explore representative models in further detail, from traditional statistical models to recent kernel models, presenting several up-to-date research projects in bioinfomatics to exemplify how biological questions can benefit from a machine learning approach. Finally, we discuss how cooperation between biologists and machine learners might be made smoother.

PDF [BibTex]

PDF [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web [BibTex]

Web [BibTex]


no image
Efficient tests for the deconvolution hypothesis

Langovoy, M.

Workshop on Statistical Inverse Problems, March 2006 (poster)

Web [BibTex]

Web [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web [BibTex]

Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

Web [BibTex]


no image
Classification of natural scenes: critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 251, 2006 (poster)

[BibTex]

[BibTex]


no image
Texture and haptic cues in slant discrimination: combination is sensitive to reliability but not statistically optimal

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen (TeaP 2006), 48, pages: 80, 2006 (poster)

[BibTex]

[BibTex]


no image
Ähnlichkeitsmasse in Modellen zur Kategorienbildung

Jäkel, F., Wichmann, F.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 223, 2006 (poster)

[BibTex]

[BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 205, 2006 (poster)

[BibTex]

[BibTex]

2005


no image
Spectral clustering and transductive inference for graph data

Zhou, D.

NIPS Workshop on Kernel Methods and Structured Domains, December 2005 (talk)

PDF Web [BibTex]

2005

PDF Web [BibTex]


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

Web [BibTex]

Web [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

Web DOI [BibTex]

Web DOI [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D.

The 22nd International Conference on Machine Learning, August 2005 (talk)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

PDF [BibTex]

PDF [BibTex]


no image
Comparative evaluation of Independent Components Analysis algorithms for isolating target-relevant information in brain-signal classification

Hill, N., Schröder, M., Lal, T., Schölkopf, B.

Brain-Computer Interface Technology, 3, pages: 95, June 2005 (poster)

PDF [BibTex]


no image
Machine-Learning Approaches to BCI in Tübingen

Bensch, M., Bogdan, M., Hill, N., Lal, T., Rosenstiel, W., Schölkopf, B., Schröder, M.

Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

[BibTex]

[BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

ROBOTICS Workshop on Modular Foundations for Control and Perception, June 2005 (talk)

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Humanoid Robots

Peters, J.

First Conference Undergraduate Computer Sciences and Informations Sciences (CS/IS), May 2005 (talk)

[BibTex]

[BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

47, pages: 88, 47. Tagung Experimentell Arbeitender Psychologen, April 2005 (poster)

[BibTex]

[BibTex]


no image
Classification of Natural Scenes using Global Image Statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

8, pages: 88, 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and nonanimal images. After applying a DFT to the image, we put the Fourier spectrum of each image into 48 bins (8 orientations with 6 frequency bands). Using all of these bins, classification performance on the Fourier spectrum reached 70%. In an iterative procedure, we then removed the bins whose absence caused the smallest damage to the classification performance (one bin per iteration). Notably, performance stayed at about 70% until less then 6 bins were left. A detailed analysis of the classification weights showed that a comparatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical orientations at the highest spatial frequency band. When using only a single frequency band (8 bins) we found that 67% classification performance could be reached when only the high spatial frequency information was used, which decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially pre-filtered images. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

Web [BibTex]

Web [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, T., Hill, N., Rasmussen, C., Wichmann, F.

8, pages: 109, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
A psychometric function can be described by its shape and four parameters: position or threshold, slope or width, false alarm rate or chance level, and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. We introduce a new adaptive bayesian psychometric method which collects data for any set of parameters with high efficency. It places trials by minimizing the expected entropy [1] of the posterior pdf over a set of possible stimuli. In contrast to most other adaptive methods it is neither limited to threshold measurement nor to forced-choice designs. Nuisance parameters can be included in the estimation and lead to less biased estimates. The method supports block designs which do not harm the performance when a sufficient number of trials are performed. Block designs are useful for control of response bias and short term performance shifts such as adaptation. We present the results of evaluations of the method by computer simulations and experiments with human observers. In the simulations we investigated the role of parametric assumptions, the quality of different point estimates, the effect of dynamic termination criteria and many other settings. [1] Kontsevich, L.L. and Tyler, C.W. (1999): Bayesian adaptive estimation of psychometric slope and threshold. Vis. Res. 39 (16), 2729-2737.

Web [BibTex]

Web [BibTex]


no image
Automatic Classification of Plankton from Digital Images

Sieracki, M., Riseman, E., Balch, W., Benfield, M., Hanson, A., Pilskaln, C., Schultz, H., Sieracki, C., Utgoff, P., Blaschko, M., Holness, G., Mattar, M., Lisin, D., Tupper, B.

ASLO Aquatic Sciences Meeting, 1, pages: 1, February 2005 (poster)

[BibTex]

[BibTex]


no image
Bayesian Inference for Psychometric Functions

Kuss, M., Jäkel, F., Wichmann, F.

8, pages: 106, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
In psychophysical studies of perception the psychometric function is used to model the relation between the physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. We propose the use of Bayesian inference to extract the information contained in experimental data to learn about the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we use a Markov chain Monte Carlo method to generate samples from the posterior distribution over parameters. These samples can be used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. We compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with parametric bootstrap techniques for confidence interval estimation. Experiments indicate that Bayesian inference methods are superior to bootstrap-based methods and are thus the method of choice for estimating the psychometric function and its confidence-intervals.

Web [BibTex]

Web [BibTex]


no image
Kernel Constrained Covariance for Dependence Measurement

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Belitski, A., Augath, M., Murayama, Y., Schölkopf, B., Logothetis, N.

AISTATS, January 2005 (talk)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth. All current kernel-based independence tests share this behaviour. We demonstrate exponential convergence between the population and empirical COCO. Finally, we use COCO as a measure of joint neural activity between voxels in MRI recordings of the macaque monkey, and compare the results to the mutual information and the correlation. We also show the effect of removing breathing artefacts from the MRI recording.

PostScript [BibTex]

PostScript [BibTex]


no image
Global image statistics of natural scenes

Drewes, J., Wichmann, F., Gegenfurtner, K.

Bioinspired Information Processing, 08, pages: 1, 2005 (poster)

[BibTex]

[BibTex]