Header logo is ei


2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF [BibTex]

PDF [BibTex]


no image
Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Reward-Weighted Regression

Peters, J.

NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph boosting for molecular QSAR analysis

Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Abstract
We propose a new boosting method that systematically combines graph mining and mathematical programming-based machine learning. Informative and interpretable subgraph features are greedily found by a series of graph mining calls. Due to our mathematical programming formulation, subgraph features and pre-calculated real-valued features are seemlessly integrated. We tested our algorithm on a quantitative structure-activity relationship (QSAR) problem, which is basically a regression problem when given a set of chemical compounds. In benchmark experiments, the prediction accuracy of our method favorably compared with the best results reported on each dataset.

Web [BibTex]

Web [BibTex]


no image
Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

Abstract
We propose a new approach to infer the causal structure that has generated the observed statistical dependences among n random variables. The idea is that the factorization of the joint measure of cause and effect into P(cause)P(effect|cause) leads typically to simpler conditionals than non-causal factorizations. To evaluate the complexity of the conditionals we have tried two methods. First, we have compared them to those which maximize the conditional entropy subject to the observed first and second moments since we consider the latter as the simplest conditionals. Second, we have fitted the data with conditional probability measures being exponents of functions in an RKHS space and defined the complexity by a Hilbert-space semi-norm. Such a complexity measure has several properties that are useful for our purpose. We describe some encouraging results with both methods applied to real-world data. Moreover, we have combined constraint-based approaches to causal discovery (i.e., methods using only information on conditional statistical dependences) with our method in order to distinguish between causal hypotheses which are equivalent with respect to the imposed independences. Furthermore, we compare the performance to Bayesian approaches to causal inference.

Web [BibTex]


no image
Learning Optimal EEG Features Across Time, Frequency and Space

Farquhar, J., Hill, J., Schölkopf, B.

NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-Supervised Learning

Zien, A.

Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images

Hofmann, M., Steinke, F., Judenhofer, M., Claussen, C., Schölkopf, B., Pichler, B.

IEEE Medical Imaging Conference, November 2006 (talk)

Abstract
A promising new combination in multimodality imaging is MR-PET, where the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET) are combined. Although many technical problems have recently been solved, it is still an open problem to determine the attenuation map from the available MR scan, as the MR intensities are not directly related to the attenuation values. One standard approach is an atlas registration where the atlas MR image is aligned with the patient MR thus also yielding an attenuation image for the patient. We also propose another approach, which to our knowledge has not been tried before: Using Support Vector Machines we predict the attenuation value directly from the local image information. We train this well-established machine learning algorithm using small image patches. Although both approaches sometimes yielded acceptable results, they also showed their specific shortcomings: The registration often fails with large deformations whereas the prediction approach is problematic when the local image structure is not characteristic enough. However, the failures often do not coincide and integration of both information sources is promising. We therefore developed a combination method extending Support Vector Machines to use not only local image structure but also atlas registered coordinates. We demonstrate the strength of this combination approach on a number of examples.

[BibTex]

[BibTex]


no image
Semi-Supervised Support Vector Machines and Application to Spam Filtering

Zien, A.

ECML Discovery Challenge Workshop, September 2006 (talk)

Abstract
After introducing the semi-supervised support vector machine (aka TSVM for "transductive SVM"), a few popular training strategies are briefly presented. Then the assumptions underlying semi-supervised learning are reviewed. Finally, two modern TSVM optimization techniques are applied to the spam filtering data sets of the workshop; it is shown that they can achieve excellent results, if the problem of the data being non-iid can be handled properly.

PDF Web [BibTex]


no image
Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti & Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

Web [BibTex]

Web [BibTex]


no image
Inferential Structure Determination: Probabilistic determination and validation of NMR structures

Habeck, M.

Gordon Research Conference on Computational Aspects of Biomolecular NMR, September 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Clark, R., Ossowski, S., Warthmann, N., Shinn, P., Frazer, K., Ecker, J., Huson, D., Weigel, D., Schölkopf, B., Rätsch, G.

2nd ISCB Student Council Symposium, August 2006 (talk)

Abstract
Analyzing resequencing array data using machine learning, we obtain a genome-wide inventory of polymorphisms in 20 wild strains of Arabidopsis thaliana, including 750,000 single nucleotide poly- morphisms (SNPs) and thousands of highly polymorphic regions and deletions. We thus provide an unprecedented resource for the study of natural variation in plants.

Web [BibTex]

Web [BibTex]


no image
Inferential structure determination: Overview and new developments

Habeck, M.

Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web DOI [BibTex]

Web DOI [BibTex]


no image
MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models

Rasmussen, C., Görür, D.

ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

Abstract
We compare the predictive accuracy of the Dirichlet Process Gaussian mixture models using conjugate and conditionally conjugate priors and show that better density models result from using the wider class of priors. We explore several MCMC schemes exploiting conditional conjugacy and show their computational merits on several multidimensional density estimation problems.

Web [BibTex]

Web [BibTex]


no image
Sampling for non-conjugate infinite latent feature models

Görür, D., Rasmussen, C.

(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

Abstract
Latent variable models are powerful tools to model the underlying structure in data. Infinite latent variable models can be defined using Bayesian nonparametrics. Dirichlet process (DP) models constitute an example of infinite latent class models in which each object is assumed to belong to one of the, mutually exclusive, infinitely many classes. Recently, the Indian buffet process (IBP) has been defined as an extension of the DP. IBP is a distribution over sparse binary matrices with infinitely many columns which can be used as a distribution for non-exclusive features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described, however requiring conjugacy restricts the use of IBP. We describe an MCMC algorithm for non-conjugate IBP models. Modelling the choice behaviour is an important topic in psychology, economics and related fields. Elimination by Aspects (EBA) is a choice model that assumes each alternative has latent features with associated weights that lead to the observed choice outcomes. We formulate a non-parametric version of EBA by using IBP as the prior over the latent binary features. We infer the features of objects that lead to the choice data by using our sampling scheme for inference.

PDF [BibTex]

PDF [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
An Inventory of Sequence Polymorphisms For Arabidopsis

Clark, R., Ossowski, S., Schweikert, G., Rätsch, G., Shinn, P., Zeller, G., Warthmann, N., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D.

17th International Conference on Arabidopsis Research, April 2006 (talk)

Abstract
We have used high-density oligonucleotide arrays to characterize common sequence variation in 20 wild strains of Arabidopsis thaliana that were chosen for maximal genetic diversity. Both strands of each possible SNP of the 119 Mb reference genome were represented on the arrays, which were hybridized with whole genome, isothermally amplified DNA to minimize ascertainment biases. Using two complementary approaches, a model based algorithm, and a newly developed machine learning method, we identified over 550,000 SNPs with a false discovery rate of ~ 0.03 (average of 1 SNP for every 216 bp of the genome). A heuristic algorithm predicted in addition ~700 highly polymorphic or deleted regions per accession. Over 700 predicted polymorphisms with major functional effects (e.g., premature stop codons, or deletions of coding sequence) were validated by dideoxy sequencing. Using this data set, we provide the first systematic description of the types of genes that harbor major effect polymorphisms in natural populations at moderate allele frequencies. The data also provide an unprecedented resource for the study of genetic variation in an experimentally tractable, multicellular model organism.

[BibTex]

[BibTex]


no image
Machine Learning and Applications in Biology

Shin, H.

6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

Abstract
The emergence of the fields of computational biology and bioinformatics has alleviated the burden of solving many biological problems, saving the time and cost required for experiments and also providing predictions that guide new experiments. Within computational biology, machine learning algorithms have played a central role in dealing with the flood of biological data. The goal of this tutorial is to raise awareness and comprehension of machine learning so that biologists can properly match the task at hand to the corresponding analytical approach. We start by categorizing biological problem settings and introduce the general machine learning schemes that fit best to each or these categories. We then explore representative models in further detail, from traditional statistical models to recent kernel models, presenting several up-to-date research projects in bioinfomatics to exemplify how biological questions can benefit from a machine learning approach. Finally, we discuss how cooperation between biologists and machine learners might be made smoother.

PDF [BibTex]

PDF [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web [BibTex]

Web [BibTex]


no image
Efficient tests for the deconvolution hypothesis

Langovoy, M.

Workshop on Statistical Inverse Problems, March 2006 (poster)

Web [BibTex]

Web [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web [BibTex]

Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

Web [BibTex]


no image
Classification of natural scenes: critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 251, 2006 (poster)

[BibTex]

[BibTex]


no image
Texture and haptic cues in slant discrimination: combination is sensitive to reliability but not statistically optimal

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen (TeaP 2006), 48, pages: 80, 2006 (poster)

[BibTex]

[BibTex]


no image
Ähnlichkeitsmasse in Modellen zur Kategorienbildung

Jäkel, F., Wichmann, F.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 223, 2006 (poster)

[BibTex]

[BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 205, 2006 (poster)

[BibTex]

[BibTex]

2002


no image
Real-Time Statistical Learning for Oculomotor Control and Visuomotor Coordination

Vijayakumar, S., Souza, A., Peters, J., Conradt, J., Rutkowski, T., Ijspeert, A., Nakanishi, J., Inoue, M., Shibata, T., Wiryo, A., Itti, L., Amari, S., Schaal, S.

(Editors: Becker, S. , S. Thrun, K. Obermayer), Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), December 2002 (poster)

Web [BibTex]

2002

Web [BibTex]


no image
Surface-slant-from-texture discrimination: Effects of slant level and texture type

Rosas, P., Wichmann, F., Wagemans, J.

Journal of Vision, 2(7):300, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
The problem of surface-slant-from-texture was studied psychophysically by measuring the performances of five human subjects in a slant-discrimination task with a number of different types of textures: uniform lattices, randomly displaced lattices, polka dots, Voronoi tessellations, orthogonal sinusoidal plaid patterns, fractal or 1/f noise, “coherent” noise and a “diffusion-based” texture (leopard skin-like). The results show: (1) Improving performance with larger slants for all textures. (2) A “non-symmetrical” performance around a particular slant characterized by a psychometric function that is steeper in the direction of the more slanted orientation. (3) For sufficiently large slants (66 deg) there are no major differences in performance between any of the different textures. (4) For slants at 26, 37 and 53 degrees, however, there are marked differences between the different textures. (5) The observed differences in performance across textures for slants up to 53 degrees are systematic within subjects, and nearly so across them. This allows a rank-order of textures to be formed according to their “helpfulness” — that is, how easy the discrimination task is when a particular texture is mapped on the surface. Polka dots tended to allow the best slant discrimination performance, noise patterns the worst up to the large slant of 66 degrees at which performance was almost independent of the particular texture chosen. Finally, our large number of 2AFC trials (approximately 2800 trials per texture across subjects) and associated tight confidence intervals may enable us to find out about which statistical properties of the textures could be responsible for surface-slant-from-texture estimation, with the ultimate goal of being able to predict observer performance for any arbitrary texture.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Modelling Contrast Transfer in Spatial Vision

Wichmann, F.

Journal of Vision, 2(10):7, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast, the results of which allow different models of contrast processing (e.g. energy versus gain-control models) to be critically assessed (Wichmann & Henning, 1999). Studies of detection and discrimination using pulse train stimuli in noise, on the other hand, make predictions about the number, position and properties of noise sources within the processing stream (Henning, Bird & Wichmann, 2002). Here I report modelling results combining data from both sinusoidal and pulse train experiments in and without noise to arrive at a more tightly constrained model of early spatial vision.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Pulse train detection and discrimination in pink noise

Henning, G., Wichmann, F., Bird, C.

Journal of Vision, 2(7):229, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on the display was measured and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband "pink" noise, designed to equalize the detectability of the components of the pulse train, made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. In contrast, a 2.09-c/deg "super train," constructed to have 8 equally detectable harmonics, was a factor of five more detectable than any of its components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phase information in the recognition of natural images

Braun, D., Wichmann, F., Gegenfurtner, K.

Perception, 31(ECVP Abstract Supplement):133, 25th European Conference on Visual Perception, August 2002 (poster)

Abstract
Fourier phase plays an important role in determining global image structure. For example, when the phase spectrum of an image of a flower is swapped with that of a tank, we usually perceive a tank, even though the amplitude spectrum is still that of the flower. Similarly, when the phase spectrum of an image is randomly swapped across frequencies, that is its Fourier energy is randomly distributed over the image, the resulting image becomes impossible to recognise. Our goal was to evaluate the effect of phase manipulations in a quantitative manner. Subjects viewed two images of natural scenes, one of which contained an animal (the target) embedded in the background. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was the independent variable, uniformly distributed between 0° and ±180°. Subjects were remarkably resistant to phase noise. Even with ±120° noise, subjects were still 75% correct. The proportion of correct answers closely followed the correlation between original and noise-distorted images. Thus it appears as if it was not the global phase information per se that determines our percept of natural images, but rather the effect of phase on local image features.

Web [BibTex]

Web [BibTex]


no image
Detection and discrimination in pink noise

Wichmann, F., Henning, G.

5, pages: 100, 5. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2002 (poster)

Abstract
Much of our information about early spatial vision comes from detection experiments involving low-contrast stimuli, which are not, perhaps, particularly "natural" stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast whilst keeping the number of unknown parameters comparatively small. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on our display was measured using a high-performance digital camera (Photometrics) and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband 1-D "pink" noise made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

Web [BibTex]

Web [BibTex]


no image
Application of Monte Carlo Methods to Psychometric Function Fitting

Wichmann, F.

Proceedings of the 33rd European Conference on Mathematical Psychology, pages: 44, 2002 (poster)

Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. Here I describe methods to (1) fitting psychometric functions, (2) assessing goodness-of-fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them. First I describe a constrained maximum-likelihood method for parameter estimation. Using Monte-Carlo simulations I demonstrate that it is important to have a fitting method that takes stimulus-independent errors (or "lapses") into account. Second, a number of goodness-of-fit tests are introduced. Because psychophysical data sets are usually rather small I advocate the use of Monte Carlo resampling techniques that do not rely on asymptotic theory for goodness-of-fit assessment. Third, a parametric bootstrap is employed to estimate the variability of fitted parameters and derived quantities such as thresholds and slopes. I describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested without incurring too high a cost in computation time. Finally I describe how the methods can be extended to test hypotheses concerning the form and shape of several psychometric functions. Software describing the methods is available (http://www.bootstrap-software.com/psignifit/), as well as articles describing the methods in detail (Wichmann&Hill, Perception&Psychophysics, 2001a,b).

[BibTex]

[BibTex]


no image
Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons

Franz, MO.

SAB 02 Workshop, Robotics as theoretical biology, 7th meeting of the International Society for Simulation of Adaptive Behaviour (SAB), (Editors: Prescott, T.; Webb, B.), 2002 (poster)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion (see example in Fig.1). We examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor that can be moved along three translational and one rotational degree of freedom. The experiments indicate that the proposed approach yields accurate results for rotation estimates, independently of the current translation and scene layout. Translation estimates, however, turned out to be sensitive to simultaneous rotation and to the particular distance distribution of the scene. The gantry experiments confirm that the receptive field organization of the tangential neurons allows them, as an ensemble, to extract self-motion from the optic flow.

PDF [BibTex]

PDF [BibTex]

1996


no image
Aktives Erwerben eines Ansichtsgraphen zur diskreten Repräsentation offener Umwelten.

Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.

Fortschritte der K{\"u}nstlichen Intelligenz, pages: 138-147, (Editors: M. Thielscher and S.-E. Bornscheuer), 1996 (poster)

PDF PostScript [BibTex]

1996

PDF PostScript [BibTex]


no image
Does motion-blur facilitate motion detection ?

Wichmann, F., Henning, G.

OSA Conference Program, pages: S127, 1996 (poster)

Abstract
Retinal-image motion induces the perceptual loss of high spatial-frequency content - motion blur - that affects broadband stimuli. The relative detectability of motion blur and motion itself, measured in 2-AFC experiments, shows that, although the blur associated with motion can be detected, motion itself is the more effective cue.

[BibTex]

[BibTex]