64 results
(View BibTeX file of all listed publications)

**Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI**
Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience},
year = {2013},
month = {7},
volume = {14},
number = {Supplement 1},
pages = {A1}, (talk)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**MR-Based Attenuation Correction for Combined Brain PET/MR: Robustness of Atlas- and Pattern Recognition Method to Atlas Registration Failures**
IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE MIC), 2013 (talk)

**Domain Generalization via Invariant Feature Representation**
30th International Conference on Machine Learning (ICML2013), 2013 (talk)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**BCPy2000**
Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

**Logistic Regression for Graph Classification**
NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

**New Projected Quasi-Newton Methods with Applications**
Microsoft Research Tech-talk, December 2008 (talk)

**MR-Based PET Attenuation Correction: Initial Results for Whole Body**
Medical Imaging Conference, October 2008 (talk)

**Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches**
19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

**Data-driven goodness-of-fit tests**
2008 Barcelona Conference on Asymptotic Statistics (BAS), September 2008 (talk)

**mGene: A Novel Discriminative Gene Finder**
Worm Genomics and Systems Biology meeting, July 2008 (talk)

**Discovering Common Sequence Variation in
Arabidopsis thaliana**
16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

**Coding Theory in Brain-Computer Interfaces**
Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

**Motor Skill Learning for Cognitive Robotics**
6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

**Painless Embeddings of Distributions: the Function Space View (Part 1)**
25th International Conference on Machine Learning (ICML), July 2008 (talk)

**Reinforcement Learning for Robotics**
8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

**Multi-Classification by Categorical Features via Clustering**
25th International Conference on Machine Learning (ICML), June 2008 (talk)

**Thin-Plate Splines Between Riemannian Manifolds**
Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

**New Frontiers in Characterizing Structure and Dynamics by NMR**
In *Computational Structural Biology: Methods and Applications*, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

**Learning resolved velocity control**
2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

**Bayesian methods for protein structure determination**
Machine Learning in Structural Bioinformatics, April 2008 (talk)

**A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs**
In *Robotics and Cognitive Approaches to Spatial Mapping*, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Reinforcement Learning by Reward-Weighted Regression**
NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Machine Learning and Applications in Biology**
6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

**Combining a Filter Method with SVMs**
In *Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207*, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Embedded methods**
In *Feature Extraction: Foundations and Applications*, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Learning Control and Planning from the View of Control Theory and Imitation**
NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

**Recurrent neural networks from learning attractor dynamics**
NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Bousquet, O.
**Statistical Learning Theory**
Machine Learning Summer School, August 2003 (talk)

**Remarks on Statistical Learning Theory**
Machine Learning Summer School, August 2003 (talk)