Header logo is ei


2005


no image
Spectral clustering and transductive inference for graph data

Zhou, D.

NIPS Workshop on Kernel Methods and Structured Domains, December 2005 (talk)

PDF Web [BibTex]

2005

PDF Web [BibTex]


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D.

The 22nd International Conference on Machine Learning, August 2005 (talk)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

PDF [BibTex]

PDF [BibTex]


no image
Machine-Learning Approaches to BCI in Tübingen

Bensch, M., Bogdan, M., Hill, N., Lal, T., Rosenstiel, W., Schölkopf, B., Schröder, M.

Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

[BibTex]

[BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

ROBOTICS Workshop on Modular Foundations for Control and Perception, June 2005 (talk)

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Humanoid Robots

Peters, J.

First Conference Undergraduate Computer Sciences and Informations Sciences (CS/IS), May 2005 (talk)

[BibTex]

[BibTex]


no image
Kernel Constrained Covariance for Dependence Measurement

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Belitski, A., Augath, M., Murayama, Y., Schölkopf, B., Logothetis, N.

AISTATS, January 2005 (talk)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth. All current kernel-based independence tests share this behaviour. We demonstrate exponential convergence between the population and empirical COCO. Finally, we use COCO as a measure of joint neural activity between voxels in MRI recordings of the macaque monkey, and compare the results to the mutual information and the correlation. We also show the effect of removing breathing artefacts from the MRI recording.

PostScript [BibTex]

PostScript [BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Web [BibTex]

2002

Web [BibTex]

1999


no image
Advances in Kernel Methods - Support Vector Learning

Schölkopf, B., Burges, C., Smola, A.

MIT Press, Cambridge, MA, 1999 (book)

[BibTex]

1999

[BibTex]