Header logo is ei


2013


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

[BibTex]

2013

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

Web [BibTex]

Web [BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2011


no image
Spatiotemporal mapping of rhythmic activity in the inferior convexity of the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

41(239.15), 41st Annual Meeting of the Society for Neuroscience (Neuroscience), November 2011 (poster)

Abstract
The inferior convexity of the macaque prefrontal cortex (icPFC) is known to be involved in higher order processing of sensory information mediating stimulus selection, attention and working memory. Until now, the vast majority of electrophysiological investigations of the icPFC employed single electrode recordings. As a result, relatively little is known about the spatiotemporal structure of neuronal activity in this cortical area. Here we study in detail the spatiotemporal properties of local field potentials (LFP's) in the icPFC using multi electrode recordings during anesthesia. We computed the LFP-LFP coherence as a function of frequency for thousands of pairs of simultaneously recorded sites anterior to the arcuate and inferior to the principal sulcus. We observed two distinct peaks of coherent oscillatory activity between approximately 4-10 and 15-25 Hz. We then quantified the instantaneous phase of these frequency bands using the Hilbert transform and found robust phase gradients across recording sites. The dependency of the phase on the spatial location reflects the existence of traveling waves of electrical activity in the icPFC. The dominant axis of these traveling waves roughly followed the ventral-dorsal plane. Preliminary results show that repeated visual stimulation with a 10s movie had no dramatic effect on the spatial structure of the traveling waves. Traveling waves of electrical activity in the icPFC could reflect highly organized cortical processing in this area of prefrontal cortex.

Web [BibTex]

2011

Web [BibTex]


no image
Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Schmidt, H., Kolb, A., Beyer, T., Reimold, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-96), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
Combined PET/MR provides simultaneous molecular and functional information in an anatomical context with unique soft tissue contrast. However, PET/MR does not support direct derivation of attenuation maps of objects and tissues within the measured PET field-of-view. Valid attenuation maps are required for quantitative PET imaging, specifically for scientific brain studies. Therefore, several methods have been proposed for MR-based attenuation correction (MR-AC). Last year, we performed an evaluation of different MR-AC methods, including simple MR thresholding, atlas- and machine learning-based MR-AC. CT-based AC served as gold standard reference. RoIs from 2 anatomic brain atlases with different levels of detail were used for evaluation of correction accuracy. We now extend our evaluation of different MR-AC methods by using an enlarged dataset of 23 patients from the integrated BrainPET/MR (Siemens Healthcare). Further, we analyze options for improving the MR-AC performance in terms of speed and accuracy. Finally, we assess the impact of ignoring BrainPET positioning aids during the course of MR-AC. This extended study confirms the overall prediction accuracy evaluation results of the first evaluation in a larger patient population. Removing datasets affected by metal artifacts from the Atlas-Patch database helped to improve prediction accuracy, although the size of the database was reduced by one half. Significant improvement in prediction speed can be gained at a cost of only slightly reduced accuracy, while further optimizations are still possible.

Web [BibTex]

Web [BibTex]


no image
Atlas- and Pattern Recognition Based Attenuation Correction on Simultaneous Whole-Body PET/MR

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Hofmann, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-116), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
With the recent availability of clinical whole-body PET/MRI it is possible to evaluate and further develop MR-based attenuation correction methods using simultaneously acquired PET/MR data. We present first results for MRAC on patient data acquired on a fully integrated whole-body PET/MRI (Biograph mMR, Siemens) using our method that applies atlas registration and pattern recognition (ATPR) and compare them to the segmentation-based (SEG) method provided by the manufacturer. The ATPR method makes use of a database of previously aligned pairs of MR-CT volumes to predict attenuation values on a continuous scale. The robustness of the method in presence of MR artifacts was improved by location and size based detection. Lesion to liver and lesion to blood ratios (LLR and LBR) were compared for both methods on 29 iso-contour ROIs in 4 patients. ATPR showed >20% higher LBR and LLR for ROIs in and >7% near osseous tissue. For ROIs in soft tissue, both methods yielded similar ratios with max. differences <6% . For ROIs located within metal artifacts in the MR image, ATPR showed >190% higher LLR and LBR than SEG, where ratios <0.1 occured. For lesions in the neighborhood of artifacts, both ratios were >15% higher for ATPR. If artifacts in MR volumes caused by metal implants are not accounted for in the computation of attenuation maps, they can lead to a strong decrease of lesion to background ratios, even to disappearance of hot spots. Metal implants are likely to occur in the patient collective receiving combined PET/MR scans, of our first 10 patients, 3 had metal implants. Our method is currently able to account for artifacts in the pelvis caused by prostheses. The ability of the ATPR method to account for bone leads to a significant increase of LLR and LBR in osseous tissue, which supports our previous evaluations with combined PET/CT and PET/MR data. For lesions within soft tissue, lesion to background ratios of ATPR and SEG were comparable.

Web [BibTex]

Web [BibTex]


no image
Retrospective blind motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):498, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
We present a retrospective method, which significantly reduces ghosting and blurring artifacts due to subject motion. No modifications to the sequence (as in [2, 3]), or the use of additional equipment (as in [1]) are required. Our method iteratively searches for the transformation, that applied to the lines in k-space -- yields the sparsest Laplacian filter output in the spatial domain.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Model based reconstruction for GRE EPI

Blecher, W., Pohmann, R., Schölkopf, B., Seeger, M.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):493-494, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
Model based nonlinear image reconstruction methods for MRI [3] are at the heart of modern reconstruction techniques (e.g.compressed sensing [6]). In general, models are expressed as a matrix equation where y and u are column vectors of k-space and image data, X model matrix and e independent noise. However, solving the corresponding linear system is not tractable. Therefore fast nonlinear algorithms that minimize a function wrt.the unknown image are the method of choice: In this work a model for gradient echo EPI, is proposed that incorporates N/2 Ghost correction and correction for field inhomogeneities. In addition to reconstruction from full data, the model allows for sparse reconstruction, joint estimation of image, field-, and relaxation-map (like [5,8] for spiral imaging), and improved N/2 ghost correction.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simultaneous multimodal imaging of patients with bronchial carcinoma in a whole body MR/PET system

Brendle, C., Sauter, A., Schmidt, H., Schraml, C., Bezrukov, I., Martirosian, P., Hetzel, J., Müller, M., Claussen, C., Schwenzer, N., Pfannenberg, C.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):141, 28th annual scientific meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRB), October 2011 (poster)

Abstract
Purpose/Introduction: Lung cancer is among the most frequent cancers (1). Exact determination of tumour extent and viability is crucial for adequate therapy guidance. [18F]-FDG-PET allows accurate staging and the evaluation of therapy response based on glucose metabolism. Diffusion weighted MRI (DWI) is another promising tool for the evaluation of tumour viability (2,3). The aim of the study was the simultaneous PET-MR acquisition in lung cancer patients and correlation of PET and MR data. Subjects and Methods: Seven patients (age 38-73 years, mean 61 years) with highly suspected or known bronchial carcinoma were examined. First, a [18F]-FDG-PET/CT was performed (injected dose: 332-380 MBq). Subsequently, patients were examined at the whole-body MR/PET (Siemens Biograph mMR). The MRI is a modified 3T Verio whole body system with a magnet bore of 60 cm (max. amplitude gradients 45 mT/m, max. slew rate 200 T/m/s). Concerning the PET, the whole-body MR/PET system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The following parameters for PET acquisition were applied: 2 bed positions, 6 min/bed with an average uptake time of 124 min after injection (range: 110-143 min). The attenuation correction of PET data was conducted with a segmentation-based method provided by the manufacturer. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. DWI MR images were recorded simultaneously for each bed using two b-values (0/800 s/mm2). SUVmax and ADCmin were assessed in a ROI analysis. The following ratios were calculated: SUVmax(tumor)/SUVmean(liver) and ADCmin(tumor)/ADCmean(muscle). Correlation between SUV and ADC was analyzed (Pearson’s correlation). Results: Diagnostic scans could be obtained in all patients with good tumour delineation. The spatial matching of PET and DWI data was very exact. Most tumours showed a pronounced FDG-uptake in combination with decreased ADC values. Significant correlation was found between SUV and ADC ratios (r = -0.87, p = 0.0118). Discussion/Conclusion: Simultaneous MR/PET imaging of lung cancer is feasible. The whole-body MR/PET system can provide complementary information regarding tumour viability and cellularity which could facilitate a more profound tumour characterization. Further studies have to be done to evaluate the importance of these parameters for therapy decisions and monitoring

Web DOI [BibTex]

Web DOI [BibTex]


no image
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011

Kakade, S., von Luxburg, U.

pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

Web [BibTex]

Web [BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF [BibTex]

PDF [BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

Web [BibTex]

Web [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for finding deletions and short insertions using paired-end short reads

Grimm, D., Hagmann, J., König, D., Weigel, D., Borgwardt, KM.

International Conference on Intelligent Systems for Molecular Biology (ISMB), 2011 (poster)

Web [BibTex]

Web [BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

Empirical Inference Symposium, 2011 (poster)

[BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

PDF [BibTex]

PDF [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

PDF [BibTex]

PDF [BibTex]

2002


no image
Real-Time Statistical Learning for Oculomotor Control and Visuomotor Coordination

Vijayakumar, S., Souza, A., Peters, J., Conradt, J., Rutkowski, T., Ijspeert, A., Nakanishi, J., Inoue, M., Shibata, T., Wiryo, A., Itti, L., Amari, S., Schaal, S.

(Editors: Becker, S. , S. Thrun, K. Obermayer), Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), December 2002 (poster)

Web [BibTex]

2002

Web [BibTex]


no image
Surface-slant-from-texture discrimination: Effects of slant level and texture type

Rosas, P., Wichmann, F., Wagemans, J.

Journal of Vision, 2(7):300, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
The problem of surface-slant-from-texture was studied psychophysically by measuring the performances of five human subjects in a slant-discrimination task with a number of different types of textures: uniform lattices, randomly displaced lattices, polka dots, Voronoi tessellations, orthogonal sinusoidal plaid patterns, fractal or 1/f noise, “coherent” noise and a “diffusion-based” texture (leopard skin-like). The results show: (1) Improving performance with larger slants for all textures. (2) A “non-symmetrical” performance around a particular slant characterized by a psychometric function that is steeper in the direction of the more slanted orientation. (3) For sufficiently large slants (66 deg) there are no major differences in performance between any of the different textures. (4) For slants at 26, 37 and 53 degrees, however, there are marked differences between the different textures. (5) The observed differences in performance across textures for slants up to 53 degrees are systematic within subjects, and nearly so across them. This allows a rank-order of textures to be formed according to their “helpfulness” — that is, how easy the discrimination task is when a particular texture is mapped on the surface. Polka dots tended to allow the best slant discrimination performance, noise patterns the worst up to the large slant of 66 degrees at which performance was almost independent of the particular texture chosen. Finally, our large number of 2AFC trials (approximately 2800 trials per texture across subjects) and associated tight confidence intervals may enable us to find out about which statistical properties of the textures could be responsible for surface-slant-from-texture estimation, with the ultimate goal of being able to predict observer performance for any arbitrary texture.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Modelling Contrast Transfer in Spatial Vision

Wichmann, F.

Journal of Vision, 2(10):7, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast, the results of which allow different models of contrast processing (e.g. energy versus gain-control models) to be critically assessed (Wichmann & Henning, 1999). Studies of detection and discrimination using pulse train stimuli in noise, on the other hand, make predictions about the number, position and properties of noise sources within the processing stream (Henning, Bird & Wichmann, 2002). Here I report modelling results combining data from both sinusoidal and pulse train experiments in and without noise to arrive at a more tightly constrained model of early spatial vision.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Pulse train detection and discrimination in pink noise

Henning, G., Wichmann, F., Bird, C.

Journal of Vision, 2(7):229, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on the display was measured and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband "pink" noise, designed to equalize the detectability of the components of the pulse train, made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. In contrast, a 2.09-c/deg "super train," constructed to have 8 equally detectable harmonics, was a factor of five more detectable than any of its components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

PDF [BibTex]

PDF [BibTex]


no image
Phase information in the recognition of natural images

Braun, D., Wichmann, F., Gegenfurtner, K.

Perception, 31(ECVP Abstract Supplement):133, 25th European Conference on Visual Perception, August 2002 (poster)

Abstract
Fourier phase plays an important role in determining global image structure. For example, when the phase spectrum of an image of a flower is swapped with that of a tank, we usually perceive a tank, even though the amplitude spectrum is still that of the flower. Similarly, when the phase spectrum of an image is randomly swapped across frequencies, that is its Fourier energy is randomly distributed over the image, the resulting image becomes impossible to recognise. Our goal was to evaluate the effect of phase manipulations in a quantitative manner. Subjects viewed two images of natural scenes, one of which contained an animal (the target) embedded in the background. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was the independent variable, uniformly distributed between 0° and ±180°. Subjects were remarkably resistant to phase noise. Even with ±120° noise, subjects were still 75% correct. The proportion of correct answers closely followed the correlation between original and noise-distorted images. Thus it appears as if it was not the global phase information per se that determines our percept of natural images, but rather the effect of phase on local image features.

Web [BibTex]

Web [BibTex]


no image
Global Geometry of SVM Classifiers

Zhou, D., Xiao, B., Zhou, H., Dai, R.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)

Abstract
We construct an geometry framework for any norm Support Vector Machine (SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions and solutions of SVM classifiers are constructed by a purely geometric fashion. In contrast with the optimization theory used in SVM classifiers, we have no complicated computations any more. Each step in our theory is guided by elegant geometric intuitions.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Detection and discrimination in pink noise

Wichmann, F., Henning, G.

5, pages: 100, 5. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2002 (poster)

Abstract
Much of our information about early spatial vision comes from detection experiments involving low-contrast stimuli, which are not, perhaps, particularly "natural" stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast whilst keeping the number of unknown parameters comparatively small. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on our display was measured using a high-performance digital camera (Photometrics) and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband 1-D "pink" noise made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

Web [BibTex]

Web [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

[BibTex]

[BibTex]


no image
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Application of Monte Carlo Methods to Psychometric Function Fitting

Wichmann, F.

Proceedings of the 33rd European Conference on Mathematical Psychology, pages: 44, 2002 (poster)

Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. Here I describe methods to (1) fitting psychometric functions, (2) assessing goodness-of-fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them. First I describe a constrained maximum-likelihood method for parameter estimation. Using Monte-Carlo simulations I demonstrate that it is important to have a fitting method that takes stimulus-independent errors (or "lapses") into account. Second, a number of goodness-of-fit tests are introduced. Because psychophysical data sets are usually rather small I advocate the use of Monte Carlo resampling techniques that do not rely on asymptotic theory for goodness-of-fit assessment. Third, a parametric bootstrap is employed to estimate the variability of fitted parameters and derived quantities such as thresholds and slopes. I describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested without incurring too high a cost in computation time. Finally I describe how the methods can be extended to test hypotheses concerning the form and shape of several psychometric functions. Software describing the methods is available (http://www.bootstrap-software.com/psignifit/), as well as articles describing the methods in detail (Wichmann&Hill, Perception&Psychophysics, 2001a,b).

[BibTex]

[BibTex]


no image
Observations on the Nyström Method for Gaussian Process Prediction

Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)

Abstract
A number of methods for speeding up Gaussian Process (GP) prediction have been proposed, including the Nystr{\"o}m method of Williams and Seeger (2001). In this paper we focus on two issues (1) the relationship of the Nystr{\"o}m method to the Subset of Regressors method (Poggio and Girosi 1990; Luo and Wahba, 1997) and (2) understanding in what circumstances the Nystr{\"o}m approximation would be expected to provide a good approximation to exact GP regression.

PostScript [BibTex]

PostScript [BibTex]


no image
Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons

Franz, MO.

SAB 02 Workshop, Robotics as theoretical biology, 7th meeting of the International Society for Simulation of Adaptive Behaviour (SAB), (Editors: Prescott, T.; Webb, B.), 2002 (poster)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion (see example in Fig.1). We examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor that can be moved along three translational and one rotational degree of freedom. The experiments indicate that the proposed approach yields accurate results for rotation estimates, independently of the current translation and scene layout. Translation estimates, however, turned out to be sensitive to simultaneous rotation and to the particular distance distribution of the scene. The gantry experiments confirm that the receptive field organization of the tangential neurons allows them, as an ensemble, to extract self-motion from the optic flow.

PDF [BibTex]

PDF [BibTex]