Header logo is ei


2016


no image
Autofocusing-based correction of B0 fluctuation-induced ghosting

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)

link (url) [BibTex]

2016

link (url) [BibTex]


no image
Novel Random Forest based framework enables the segmentation of cerebral ischemic regions using multiparametric MRI

Katiyar, P., Castaneda, S., Patzwaldt, K., Russo, F., Poli, S., Ziemann, U., Disselhorst, J. A., Pichler, B. J.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

[BibTex]

[BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Multiparametric Imaging of Ischemic Stroke using [89Zr]-Desferal-EPO-PET/MRI in combination with Gaussian Mixture Modeling enables unsupervised lesions identification

Castaneda, S., Katiyar, P., Russo, F., Maurer, A., Patzwaldt, K., Poli, S., Calaminus, C., Disselhorst, J. A., Ziemann, U., Pichler, B. J.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (unpublished) Submitted

[BibTex]

[BibTex]


no image
Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N. K.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data

O’Donnell, L. J., Schultz, T.

In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

[BibTex]

[BibTex]


no image
Assessment of tumor heterogeneity using unsupervised graph based clustering of multi-modality imaging data

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

European Molecular Imaging Meeting, 2015 (poster)

[BibTex]

[BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

DOI [BibTex]

DOI [BibTex]

2008


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

Web [BibTex]

2008

Web [BibTex]


no image
Interactive images

Schölkopf, B., Toyama, K., Uyttendaele, M.

United States Patent, No 7444015, October 2008 (patent)

[BibTex]

[BibTex]


no image
Interactive images

Schölkopf, B., Toyama, K., Uyttendaele, M.

United States Patent, No 7444016, October 2008 (patent)

[BibTex]

[BibTex]


no image
Towards the neural basis of the flash-lag effect

Ecker, A., Berens, P., Hoenselaar, A., Subramaniyan, M., Tolias, A., Bethge, M.

International Workshop on Aspects of Adaptive Cortex Dynamics, 2008, pages: 1, September 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Interactive images

Schölkopf, B., Toyama, K., Uyttendaele, M.

United States Patent, No 7421115, September 2008 (patent)

[BibTex]

[BibTex]


no image
Policy Learning: A Unified Perspective With Applications In Robotics

Peters, J., Kober, J., Nguyen-Tuong, D.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 10, July 2008 (poster)

Abstract
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning al- gorithms from a common point of view, i.e, policy gradient algorithms, natural- gradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.

PDF [BibTex]

PDF [BibTex]


no image
Reinforcement Learning of Perceptual Coupling for Motor Primitives

Kober, J., Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 16, July 2008 (poster)

Abstract
Reinforcement learning is a natural choice for the learning of complex motor tasks by reward-related self-improvement. As the space of movements is high-dimensional and continuous, a policy parametrization is needed which can be used in this context. Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamic systems motor primitives that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such a Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a human would hardly be able to learn this task. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for motor primitives.

PDF [BibTex]

PDF [BibTex]


no image
Flexible Models for Population Spike Trains

Bethge, M., Macke, J., Berens, P., Ecker, A., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 52, June 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in the Primary Visual Cortex of the Awake, Behaving Macaque

Berens, P., Ecker, A., Subramaniyan, M., Macke, J., Hauck, P., Bethge, M., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 48, June 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Visual saliency re-visited: Center-surround patterns emerge as optimal predictors for human fixation targets

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 8(6):635, 8th Annual Meeting of the Vision Sciences Society (VSS), June 2008 (poster)

Abstract
Humans perceives the world by directing the center of gaze from one location to another via rapid eye movements, called saccades. In the period between saccades the direction of gaze is held fixed for a few hundred milliseconds (fixations). It is primarily during fixations that information enters the visual system. Remarkably, however, after only a few fixations we perceive a coherent, high-resolution scene despite the visual acuity of the eye quickly decreasing away from the center of gaze: This suggests an effective strategy for selecting saccade targets. Top-down effects, such as the observer's task, thoughts, or intentions have an effect on saccadic selection. Equally well known is that bottom-up effects-local image structure-influence saccade targeting regardless of top-down effects. However, the question of what the most salient visual features are is still under debate. Here we model the relationship between spatial intensity patterns in natural images and the response of the saccadic system using tools from machine learning. This allows us to identify the most salient image patterns that guide the bottom-up component of the saccadic selection system, which we refer to as perceptive fields. We show that center-surround patterns emerge as the optimal solution to the problem of predicting saccade targets. Using a novel nonlinear system identification technique we reduce our learned classifier to a one-layer feed-forward network which is surprisingly simple compared to previously suggested models assuming more complex computations such as multi-scale processing, oriented filters and lateral inhibition. Nevertheless, our model is equally predictive and generalizes better to novel image sets. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Analysis of Pattern Recognition Methods in Classifying Bold Signals in Monkeys at 7-Tesla

Ku, S., Gretton, A., Macke, J., Tolias, A., Logothetis, N.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 67, June 2008 (poster)

Abstract
Pattern recognition methods have shown that fMRI data can reveal significant information about brain activity. For example, in the debate of how object-categories are represented in the brain, multivariate analysis has been used to provide evidence of distributed encoding schemes. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success. In this study we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis and Gaussian naïve Bayes (GNB), using data collected at high field (7T) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no methods perform above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection, and outlier elimination.

[BibTex]

[BibTex]


no image
Pattern detection using reduced set vectors

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7391908, June 2008 (patent)

[BibTex]

[BibTex]


no image
New Frontiers in Characterizing Structure and Dynamics by NMR

Nilges, M., Markwick, P., Malliavin, TE., Rieping, W., Habeck, M.

In Computational Structural Biology: Methods and Applications, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both the structure and the dynamics of biological macromolecule in solution. Despite the maturity of the NMR method for structure determination, its application faces a number of challenges. The method is limited to systems of relatively small molecular mass, data collection times are long, data analysis remains a lengthy procedure, and it is difficult to evaluate the quality of the final structures. The last years have seen significant advances in experimental techniques to overcome or reduce some limitations. The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time–scales from picoseconds to seconds. NMR is unique in its ability to obtain dynamic information on an atomic scale. The experimental information on structure and dynamics is intricately mixed. It is however difficult to unite both structural and dynamical information into one consistent model, and protocols for the determination of structure and dynamics are performed independently. This chapter deals with the challenges posed by the interpretation of NMR data on structure and dynamics. We will first relate the standard structure calculation methods to Bayesian probability theory. We will then briefly describe the advantages of a fully Bayesian treatment of structure calculation. Then, we will illustrate the advantages of using Bayesian reasoning at least partly in standard structure calculations. The final part will be devoted to interpretation of experimental data on dynamics.

Web [BibTex]

Web [BibTex]


no image
Kernels and methods for selecting kernels for use in learning machines

Bartlett, P. L., Elisseeff, A., Schölkopf, B.

United States Patent, No 7353215, April 2008 (patent)

[BibTex]

[BibTex]


no image
The role of stimulus correlations for population decoding in the retina

Schwartz, G., Macke, J., Berry, M.

Computational and Systems Neuroscience 2008 (COSYNE 2008), 5, pages: 172, March 2008 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods for feature selection in a learning machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F.

United States Patent, No 7318051, January 2008 (patent)

[BibTex]

[BibTex]


no image
A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, MO., Stürzl, W., Reichardt, W., Mallot, HA.

In Robotics and Cognitive Approaches to Spatial Mapping, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

Abstract
Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Haptic Device For Cell Manipulation

Lee, DY., Son, HI., Woo, HJ.

Max-Planck-Gesellschaft, Biologische Kybernetik, 2008 (patent)

[BibTex]

[BibTex]

2004


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

Web [BibTex]

2004

Web [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

AAAI Fall Symposium on Real-Life Reinforcement Learning 2004, 2004, pages: 1, October 2004 (poster)

Web [BibTex]

Web [BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 6804391, October 2004 (patent)

[BibTex]

[BibTex]


no image
Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis

Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P., Knorr, T.

In Volume 1: Cellular and Molecular Tools, pages: 109-128, (Editors: Sabatini, M., P. Pastoureau and F. De Ceuninck), Humana Press, July 2004 (inbook)

Abstract
The regulation of chondrocytes in osteoarthritic cartilage and the expression of specific gene products by these cells during early-onset and late-stage osteoarthritis are not well characterized. With the introduction of cDNA array technology, the measurement of thousands of different genes in one small tissue sample can be carried out. Interpretation of gene expression analyses in articular cartilage is aided by the fact that this tissue contains only one cell type in both normal and diseased conditions. However, care has to be taken not to over- and misinterpret results, and some major challenges must be overcome in order to utilize the potential of this technology properly in the field of osteoarthritis.

Web [BibTex]

Web [BibTex]


no image
Distributed Command Execution

Stark, S., Berlin, M.

In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Abstract
Often you want to execute a command not only on one computer, but on several at once. For example, you might want to report the current statistics on a group of managed servers or update all of your web servers at once.

[BibTex]

[BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

11th Joint Symposium on Neural Computation (JSNC 2004), 11, pages: 1, May 2004 (poster)

Abstract
One of the major challenges in action generation for robotics and in the understanding of human motor control is to learn the "building blocks of move- ment generation," or more precisely, motor primitives. Recently, Ijspeert et al. [1, 2] suggested a novel framework how to use nonlinear dynamical systems as motor primitives. While a lot of progress has been made in teaching these mo- tor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this poster, we evaluate different reinforcement learning approaches can be used in order to improve the performance of motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and line out how these lead to a novel algorithm which is based on natural policy gradients [3]. We compare this algorithm to previous reinforcement learning algorithms in the context of dynamic motor primitive learning, and show that it outperforms these by at least an order of magnitude. We demonstrate the efficiency of the resulting reinforcement learning method for creating complex behaviors for automous robotics. The studied behaviors will include both discrete, finite tasks such as baseball swings, as well as complex rhythmic patterns as they occur in biped locomotion.

Web [BibTex]

Web [BibTex]


no image
Human Classification Behaviour Revisited by Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

7, pages: 134, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), Febuary 2004 (poster)

Abstract
We attempt to understand visual classication in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classication task. Human subjects classied the faces and their gender judgment, reaction time (RT) and condence rating (CR) were recorded for each face. RTs are longer for incorrect answers than for correct ones, high CRs are correlated with low classication errors and RTs decrease as the CRs increase. This results suggest that patterns difcult to classify need more computation by the brain than patterns easy to classify. Hyperplane learning algorithms such as Support Vector Machines (SVM), Relevance Vector Machines (RVM), Prototype learners (Prot) and K-means learners (Kmean) were used on the same classication task using the Principal Components of the texture and oweld representation of the faces. The classication performance of the learning algorithms was estimated using the face database with the true gender of the faces as labels, and also with the gender estimated by the subjects. Kmean yield a classication performance close to humans while SVM and RVM are much better. This surprising behaviour may be due to the fact that humans are trained on real faces during their lifetime while they were here tested on articial ones, while the algorithms were trained and tested on the same set of stimuli. We then correlated the human responses to the distance of the stimuli to the separating hyperplane (SH) of the learning algorithms. On the whole stimuli far from the SH are classied more accurately, faster and with higher condence than those near to the SH if we pool data across all our subjects and stimuli. We also nd three noteworthy results. First, SVMs and RVMs can learn to classify faces using the subjects' labels but perform much better when using the true labels. Second, correlating the average response of humans (classication error, RT or CR) with the distance to the SH on a face-by-face basis using Spearman's rank correlation coefcients shows that RVMs recreate human performance most closely in every respect. Third, the mean-of-class prototype, its popularity in neuroscience notwithstanding, is the least human-like classier in all cases examined.

Web [BibTex]

Web [BibTex]


no image
m-Alternative-Forced-Choice: Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F., Hill, J., Wichmann, F.

7, pages: 118, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
We explored several ways to improve the efficiency of measuring psychometric functions without resorting to adaptive procedures. a) The number m of alternatives in an m-alternative-forced-choice (m-AFC) task improves the efficiency of the method of constant stimuli. b) When alternatives are presented simultaneously on different positions on a screen rather than sequentially time can be saved and memory load for the subject can be reduced. c) A touch-screen can further help to make the experimental procedure more intuitive. We tested these ideas in the measurement of contrast sensitivity and compared them to results obtained by sequential presentation in two-interval-forced-choice (2-IFC). Qualitatively all methods (m-AFC and 2-IFC) recovered the characterictic shape of the contrast sensitivity function in three subjects. The m-AFC paradigm only took about 60% of the time of the 2-IFC task. We tried m=2,4,8 and found 4-AFC to give the best model fits and 2-AFC to have the least bias.

Web [BibTex]

Web [BibTex]


no image
Efficient Approximations for Support Vector Classifiers

Kienzle, W., Franz, M.

7, pages: 68, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In face detection, support vector machines (SVM) and neural networks (NN) have been shown to outperform most other classication methods. While both approaches are learning-based, there are distinct advantages and drawbacks to each method: NNs are difcult to design and train but can lead to very small and efcient classiers. In comparison, SVM model selection and training is rather straightforward, and, more importantly, guaranteed to converge to a globally optimal (in the sense of training errors) solution. Unfortunately, SVM classiers tend to have large representations which are inappropriate for time-critical image processing applications. In this work, we examine various existing and new methods for simplifying support vector decision rules. Our goal is to obtain efcient classiers (as with NNs) while keeping the numerical and statistical advantages of SVMs. For a given SVM solution, we compute a cascade of approximations with increasing complexities. Each classier is tuned so that the detection rate is near 100%. At run-time, the rst (simplest) detector is evaluated on the whole image. Then, any subsequent classier is applied only to those positions that have been classied as positive throughout all previous stages. The false positive rate at the end equals that of the last (i.e. most complex) detector. In contrast, since many image positions are discarded by lower-complexity classiers, the average computation time per patch decreases signicantly compared to the time needed for evaluating the highest-complexity classier alone.

Web [BibTex]

Web [BibTex]


no image
Selective Attention to Auditory Stimuli: A Brain-Computer Interface Paradigm

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Birbaumer, N., Schölkopf, B.

7, pages: 102, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
During the last 20 years several paradigms for Brain Computer Interfaces have been proposed— see [1] for a recent review. They can be divided into (a) stimulus-driven paradigms, using e.g. event-related potentials or visual evoked potentials from an EEG signal, and (b) patient-driven paradigms such as those that use premotor potentials correlated with imagined action, or slow cortical potentials (e.g. [2]). Our aim is to develop a stimulus-driven paradigm that is applicable in practice to patients. Due to the unreliability of visual perception in “locked-in” patients in the later stages of disorders such as Amyotrophic Lateral Sclerosis, we concentrate on the auditory modality. Speci- cally, we look for the effects, in the EEG signal, of selective attention to one of two concurrent auditory stimulus streams, exploiting the increased activation to attended stimuli that is seen under some circumstances [3]. We present the results of our preliminary experiments on normal subjects. On each of 400 trials, two repetitive stimuli (sequences of drum-beats or other pulsed stimuli) could be heard simultaneously. The two stimuli were distinguishable from one another by their acoustic properties, by their source location (one from a speaker to the left of the subject, the other from the right), and by their differing periodicities. A visual cue preceded the stimulus by 500 msec, indicating which of the two stimuli to attend to, and the subject was instructed to count the beats in the attended stimulus stream. There were up to 6 beats of each stimulus: with equal probability on each trial, all 6 were played, or the fourth was omitted, or the fth was omitted. The 40-channel EEG signals were analyzed ofine to reconstruct which of the streams was attended on each trial. A linear Support Vector Machine [4] was trained on a random subset of the data and tested on the remainder. Results are compared from two types of pre-processing of the signal: for each stimulus stream, (a) EEG signals at the stream's beat periodicity are emphasized, or (b) EEG signals following beats are contrasted with those following missing beats. Both forms of pre-processing show promising results, i.e. that selective attention to one or the other auditory stream yields signals that are classiable signicantly above chance performance. In particular, the second pre-processing was found to be robust to reduction in the number of features used for classication (cf. [5]), helping us to eliminate noise.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Texture and Haptic Cues in Slant Discrimination: Measuring the Effect of Texture Type

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

7, pages: 165, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich, F. A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The inuence of each cue in such average depends on the reliability of the source of information [1,5]. In particular, Ernst and Banks (2002) formulate such combination as that of the minimum variance unbiased estimator that can be constructed from the available cues. We have observed systematic differences in slant discrimination performance of human observers when different types of textures were used as cue to slant [4]. If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. However, the results for slant discrimination obtained when combining these texture types with object motion results are difcult to reconcile with the minimum variance unbiased estimator model [3]. This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, and Landy (2002) [2] have shown that while for between-modality combination the human visual system has access to the single-cue information, for withinmodality combination (visual cues) the single-cue information is lost. This suggests a coupling between visual cues and independence between visual and haptic cues. Then, in the present study we combined the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition these cues are combined as predicted by an unbiased, minimum variance estimator model. The measured weights for the cues were consistent with a combination rule sensitive to the reliability of the sources of information, but did not match the predictions of a statistically optimal combination.

PDF Web [BibTex]

PDF Web [BibTex]