Header logo is ei


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

PDF [BibTex]

2013

PDF [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

Web [BibTex]

Web [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

[BibTex]

2011


no image
Optimization for Machine Learning

Sra, S., Nowozin, S., Wright, S.

pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

Abstract
The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Web [BibTex]

2011

Web [BibTex]


no image
Spatiotemporal mapping of rhythmic activity in the inferior convexity of the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

41(239.15), 41st Annual Meeting of the Society for Neuroscience (Neuroscience), November 2011 (poster)

Abstract
The inferior convexity of the macaque prefrontal cortex (icPFC) is known to be involved in higher order processing of sensory information mediating stimulus selection, attention and working memory. Until now, the vast majority of electrophysiological investigations of the icPFC employed single electrode recordings. As a result, relatively little is known about the spatiotemporal structure of neuronal activity in this cortical area. Here we study in detail the spatiotemporal properties of local field potentials (LFP's) in the icPFC using multi electrode recordings during anesthesia. We computed the LFP-LFP coherence as a function of frequency for thousands of pairs of simultaneously recorded sites anterior to the arcuate and inferior to the principal sulcus. We observed two distinct peaks of coherent oscillatory activity between approximately 4-10 and 15-25 Hz. We then quantified the instantaneous phase of these frequency bands using the Hilbert transform and found robust phase gradients across recording sites. The dependency of the phase on the spatial location reflects the existence of traveling waves of electrical activity in the icPFC. The dominant axis of these traveling waves roughly followed the ventral-dorsal plane. Preliminary results show that repeated visual stimulation with a 10s movie had no dramatic effect on the spatial structure of the traveling waves. Traveling waves of electrical activity in the icPFC could reflect highly organized cortical processing in this area of prefrontal cortex.

Web [BibTex]

Web [BibTex]


no image
Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Schmidt, H., Kolb, A., Beyer, T., Reimold, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-96), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
Combined PET/MR provides simultaneous molecular and functional information in an anatomical context with unique soft tissue contrast. However, PET/MR does not support direct derivation of attenuation maps of objects and tissues within the measured PET field-of-view. Valid attenuation maps are required for quantitative PET imaging, specifically for scientific brain studies. Therefore, several methods have been proposed for MR-based attenuation correction (MR-AC). Last year, we performed an evaluation of different MR-AC methods, including simple MR thresholding, atlas- and machine learning-based MR-AC. CT-based AC served as gold standard reference. RoIs from 2 anatomic brain atlases with different levels of detail were used for evaluation of correction accuracy. We now extend our evaluation of different MR-AC methods by using an enlarged dataset of 23 patients from the integrated BrainPET/MR (Siemens Healthcare). Further, we analyze options for improving the MR-AC performance in terms of speed and accuracy. Finally, we assess the impact of ignoring BrainPET positioning aids during the course of MR-AC. This extended study confirms the overall prediction accuracy evaluation results of the first evaluation in a larger patient population. Removing datasets affected by metal artifacts from the Atlas-Patch database helped to improve prediction accuracy, although the size of the database was reduced by one half. Significant improvement in prediction speed can be gained at a cost of only slightly reduced accuracy, while further optimizations are still possible.

Web [BibTex]

Web [BibTex]


no image
Atlas- and Pattern Recognition Based Attenuation Correction on Simultaneous Whole-Body PET/MR

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Hofmann, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-116), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
With the recent availability of clinical whole-body PET/MRI it is possible to evaluate and further develop MR-based attenuation correction methods using simultaneously acquired PET/MR data. We present first results for MRAC on patient data acquired on a fully integrated whole-body PET/MRI (Biograph mMR, Siemens) using our method that applies atlas registration and pattern recognition (ATPR) and compare them to the segmentation-based (SEG) method provided by the manufacturer. The ATPR method makes use of a database of previously aligned pairs of MR-CT volumes to predict attenuation values on a continuous scale. The robustness of the method in presence of MR artifacts was improved by location and size based detection. Lesion to liver and lesion to blood ratios (LLR and LBR) were compared for both methods on 29 iso-contour ROIs in 4 patients. ATPR showed >20% higher LBR and LLR for ROIs in and >7% near osseous tissue. For ROIs in soft tissue, both methods yielded similar ratios with max. differences <6% . For ROIs located within metal artifacts in the MR image, ATPR showed >190% higher LLR and LBR than SEG, where ratios <0.1 occured. For lesions in the neighborhood of artifacts, both ratios were >15% higher for ATPR. If artifacts in MR volumes caused by metal implants are not accounted for in the computation of attenuation maps, they can lead to a strong decrease of lesion to background ratios, even to disappearance of hot spots. Metal implants are likely to occur in the patient collective receiving combined PET/MR scans, of our first 10 patients, 3 had metal implants. Our method is currently able to account for artifacts in the pelvis caused by prostheses. The ability of the ATPR method to account for bone leads to a significant increase of LLR and LBR in osseous tissue, which supports our previous evaluations with combined PET/CT and PET/MR data. For lesions within soft tissue, lesion to background ratios of ATPR and SEG were comparable.

Web [BibTex]

Web [BibTex]


no image
Retrospective blind motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):498, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
We present a retrospective method, which significantly reduces ghosting and blurring artifacts due to subject motion. No modifications to the sequence (as in [2, 3]), or the use of additional equipment (as in [1]) are required. Our method iteratively searches for the transformation, that applied to the lines in k-space -- yields the sparsest Laplacian filter output in the spatial domain.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Model based reconstruction for GRE EPI

Blecher, W., Pohmann, R., Schölkopf, B., Seeger, M.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):493-494, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
Model based nonlinear image reconstruction methods for MRI [3] are at the heart of modern reconstruction techniques (e.g.compressed sensing [6]). In general, models are expressed as a matrix equation where y and u are column vectors of k-space and image data, X model matrix and e independent noise. However, solving the corresponding linear system is not tractable. Therefore fast nonlinear algorithms that minimize a function wrt.the unknown image are the method of choice: In this work a model for gradient echo EPI, is proposed that incorporates N/2 Ghost correction and correction for field inhomogeneities. In addition to reconstruction from full data, the model allows for sparse reconstruction, joint estimation of image, field-, and relaxation-map (like [5,8] for spiral imaging), and improved N/2 ghost correction.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simultaneous multimodal imaging of patients with bronchial carcinoma in a whole body MR/PET system

Brendle, C., Sauter, A., Schmidt, H., Schraml, C., Bezrukov, I., Martirosian, P., Hetzel, J., Müller, M., Claussen, C., Schwenzer, N., Pfannenberg, C.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):141, 28th annual scientific meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRB), October 2011 (poster)

Abstract
Purpose/Introduction: Lung cancer is among the most frequent cancers (1). Exact determination of tumour extent and viability is crucial for adequate therapy guidance. [18F]-FDG-PET allows accurate staging and the evaluation of therapy response based on glucose metabolism. Diffusion weighted MRI (DWI) is another promising tool for the evaluation of tumour viability (2,3). The aim of the study was the simultaneous PET-MR acquisition in lung cancer patients and correlation of PET and MR data. Subjects and Methods: Seven patients (age 38-73 years, mean 61 years) with highly suspected or known bronchial carcinoma were examined. First, a [18F]-FDG-PET/CT was performed (injected dose: 332-380 MBq). Subsequently, patients were examined at the whole-body MR/PET (Siemens Biograph mMR). The MRI is a modified 3T Verio whole body system with a magnet bore of 60 cm (max. amplitude gradients 45 mT/m, max. slew rate 200 T/m/s). Concerning the PET, the whole-body MR/PET system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The following parameters for PET acquisition were applied: 2 bed positions, 6 min/bed with an average uptake time of 124 min after injection (range: 110-143 min). The attenuation correction of PET data was conducted with a segmentation-based method provided by the manufacturer. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. DWI MR images were recorded simultaneously for each bed using two b-values (0/800 s/mm2). SUVmax and ADCmin were assessed in a ROI analysis. The following ratios were calculated: SUVmax(tumor)/SUVmean(liver) and ADCmin(tumor)/ADCmean(muscle). Correlation between SUV and ADC was analyzed (Pearson’s correlation). Results: Diagnostic scans could be obtained in all patients with good tumour delineation. The spatial matching of PET and DWI data was very exact. Most tumours showed a pronounced FDG-uptake in combination with decreased ADC values. Significant correlation was found between SUV and ADC ratios (r = -0.87, p = 0.0118). Discussion/Conclusion: Simultaneous MR/PET imaging of lung cancer is feasible. The whole-body MR/PET system can provide complementary information regarding tumour viability and cellularity which could facilitate a more profound tumour characterization. Further studies have to be done to evaluate the importance of these parameters for therapy decisions and monitoring

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bayesian Time Series Models

Barber, D., Cemgil, A., Chiappa, S.

pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

[BibTex]

[BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

[BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for finding deletions and short insertions using paired-end short reads

Grimm, D., Hagmann, J., König, D., Weigel, D., Borgwardt, KM.

International Conference on Intelligent Systems for Molecular Biology (ISMB), 2011 (poster)

Web [BibTex]

Web [BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

Empirical Inference Symposium, 2011 (poster)

[BibTex]


no image
Handbook of Statistical Bioinformatics

Lu, H., Schölkopf, B., Zhao, H.

pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

[BibTex]

[BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

PDF [BibTex]

PDF [BibTex]

2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Extraction of visual features from natural video data using Slow Feature Analysis

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2006 (diplomathesis)

Abstract
Das Forschungsprojekt NeuRoBot hat das un{\"u}berwachte Erlernen einer neuronal inspirierten Steuerungsarchitektur zum Ziel, und zwar unter den Randbedingungen biologischer Plausibilit{\"a}t und der Benutzung einer Kamera als einzigen Sensor. Visuelle Merkmale, die ein angemessenes Abbild der Umgebung liefern, sind unerl{\"a}sslich, um das Ziel kollisionsfreier Navigation zu erreichen. Zeitliche Koh{\"a}renz ist ein neues Lernprinzip, das in der Lage ist, Erkenntnisse aus der Biologie des Sehens zu reproduzieren. Es wird durch die Beobachtung motiviert, dass die “Sensoren” der Retina auf deutlich k{\"u}rzeren Zeitskalen variieren als eine abstrakte Beschreibung. Zeitliche Langsamkeitsanalyse l{\"o}st das Problem, indem sie zeitlich langsam ver{\"a}nderliche Signale aus schnell ver{\"a}nderlichen Eingabesignalen extrahiert. Eine Verallgemeinerung auf Signale, die nichtlinear von den Eingaben abh{\"a}ngen, ist durch die Anwendung des Kernel-Tricks m{\"o}glich. Das einzig benutzte Vorwissen ist die zeitliche Glattheit der gewonnenen Signale. In der vorliegenden Diplomarbeit wird Langsamkeitsanalyse auf Bildausschnitte von Videos einer Roboterkamera und einer Simulationsumgebung angewendet. Zuallererst werden mittels Parameterexploration und Kreuzvalidierung die langsamst m{\"o}glichen Funktionen bestimmt. Anschließend werden die Merkmalsfunktionen analysiert und einige Ansatzpunkte f{\"u}r ihre Interpretation angegeben. Aufgrund der sehr großen Datens{\"a}tze und der umfangreichen Berechnungen behandelt ein Großteil dieser Arbeit auch Aufwandsbetrachtungen und Fragen der effizienten Berechnung. Kantendetektoren in verschiedenen Phasen und mit haupts{\"a}chlich horizontaler Orientierung stellen die wichtigsten aus der Analyse hervorgehenden Funktionen dar. Eine Anwendung auf konkrete Navigationsaufgaben des Roboters konnte bisher nicht erreicht werden. Eine visuelle Interpretation der erlernten Merkmale ist jedoch durchaus gegeben.

PDF [BibTex]

PDF [BibTex]


no image
Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti &amp; Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

Web [BibTex]

Web [BibTex]


no image
Semi-Supervised Learning

Chapelle, O., Schölkopf, B., Zien, A.

pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

Abstract
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Web [BibTex]

Web [BibTex]


no image
An Online-Computation Approach to Optimal Finite-Horizon State-Feedback Control of Nonlinear Stochastic Systems

Deisenroth, MP.

Biologische Kybernetik, Universität Karlsruhe (TH), Karlsruhe, Germany, August 2006 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web DOI [BibTex]

Web DOI [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Object Classification using Local Image Features

Nowozin, S.

Biologische Kybernetik, Technical University of Berlin, Berlin, Germany, May 2006 (diplomathesis)

Abstract
Object classification in digital images remains one of the most challenging tasks in computer vision. Advances in the last decade have produced methods to repeatably extract and describe characteristic local features in natural images. In order to apply machine learning techniques in computer vision systems, a representation based on these features is needed. A set of local features is the most popular representation and often used in conjunction with Support Vector Machines for classification problems. In this work, we examine current approaches based on set representations and identify their shortcomings. To overcome these shortcomings, we argue for extending the set representation into a graph representation, encoding more relevant information. Attributes associated with the edges of the graph encode the geometric relationships between individual features by making use of the meta data of each feature, such as the position, scale, orientation and shape of the feature region. At the same time all invariances provided by the original feature extraction method are retained. To validate the novel approach, we use a standard subset of the ETH-80 classification benchmark.

PDF [BibTex]

PDF [BibTex]


no image
Kernel PCA for Image Compression

Huhle, B.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web [BibTex]

Web [BibTex]


no image
Efficient tests for the deconvolution hypothesis

Langovoy, M.

Workshop on Statistical Inverse Problems, March 2006 (poster)

Web [BibTex]

Web [BibTex]


no image
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning

Kuss, M.

Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web [BibTex]

Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

Web [BibTex]


no image
Gaussian Processes for Machine Learning

Rasmussen, CE., Williams, CKI.

pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

Abstract
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Web [BibTex]

Web [BibTex]


no image
Semigroups applied to transport and queueing processes

Radl, A.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, 2006 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Classification of natural scenes: critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 251, 2006 (poster)

[BibTex]

[BibTex]


no image
Local Alignment Kernels for Protein Homology Detection

Saigo, H.

Biologische Kybernetik, Kyoto University, Kyoto, Japan, 2006 (phdthesis)

[BibTex]

[BibTex]


no image
Texture and haptic cues in slant discrimination: combination is sensitive to reliability but not statistically optimal

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen (TeaP 2006), 48, pages: 80, 2006 (poster)

[BibTex]

[BibTex]