Hennig, P.
Animating Samples from Gaussian Distributions
(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)
Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era
arXiv:1309.0653, 2013 (techreport)
Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars
arXiv:1309.0654, 2013 (techreport)
Schölkopf, B., Luo, Z., Vovk, V.
Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik
Springer, 2013 (book)
Pichler, B., Hofmann, M., Schölkopf, B., Steinke, F.
Method for determining a property map of an object, particularly of a living being, based on at least a first image, particularly a magnetic resonance image
United States Patent, No. 8290568, October 2012 (patent)
Schölkopf, B., Chapelle, C.
Kernels for identifying patterns in datasets containing noise or transformation invariances
United States Patent, No. 8209269, June 2012 (patent)
Grosse-Wentrup, M., Schölkopf, B.
High Gamma-Power Predicts Performance in Brain-Computer Interfacing
(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)
Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.
Support Vector Channel Selection in BCI
(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)
Jutten, C., Karhunen, J., Almeida, L., Harmeling, S.
Technical report on
Separation methods for nonlinear
mixtures
(D29), EU-Project BLISS, October 2003 (techreport)
Tsuda, K., Rätsch, G.
Image Reconstruction by Linear Programming
(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)
Harmeling, S., Bünau, P., Ziehe, A., Pham, D.
Technical report on implementation
of linear methods and validation on
acoustic sources
EU-Project BLISS, September 2003 (techreport)
Erhan, D.
On optimization, parallelization and convergence of the Expectation-Maximization algorithm for finite mixtures of Bernoulli distributions.
Helsinki University of Technology, Helsinki, Finland, August 2003 (techreport)
Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.
Ranking on Data Manifolds
(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)
Kim, K., Franz, M., Schölkopf, B.
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis
(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)
Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.
Learning with Local and Global Consistency
(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)
Dhillon, I., Sra, S., Tropp, J.
The Metric Nearness Problem with Applications
Univ. of Texas at Austin, June 2003 (techreport)
Franz, M., Schölkopf, B.
Implicit Wiener Series
(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)
Weston, J., Leslie, C., Elisseeff, A., Noble, W.
Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms
(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)
Kuss, M., Graepel, T.
The Geometry Of Kernel Canonical Correlation Analysis
(108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2003 (techreport)
Gretton, A., Herbrich, R., Smola, A.
The Kernel Mutual Information
Max Planck Institute for Biological Cybernetics, April 2003 (techreport)
Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.
Expectation Maximization for Clustering on Hyperspheres
Univ. of Texas at Austin, February 2003 (techreport)
Dhillon, I., Sra, S.
Modeling Data using Directional Distributions
Univ. of Texas at Austin, January 2003 (techreport)
Bousquet, O.
A Note on Parameter Tuning for On-Line Shifting Algorithms
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)
Quiñonero-Candela, J., Girard, A., Rasmussen, C.
Prediction at an Uncertain Input for Gaussian Processes and Relevance Vector Machines - Application to Multiple-Step Ahead Time-Series Forecasting
(IMM-2003-18), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)
Toyama, K., Schölkopf, B.
Interactive Images
(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
Zhou, D., Xiao, B., Zhou, H., Dai, R.
Global Geometry of SVM Classifiers
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.
Computationally Efficient Face Detection
(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)
Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.
Kernel-based nonlinear blind source separation
EU-Project BLISS, January 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)
Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.
Observations on the Nyström Method for Gaussian Process Prediction
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)