31 results
(View BibTeX file of all listed publications)

**Special Issue on Causal Discovery and Inference**
*ACM Transactions on Intelligent Systems and Technology (TIST)*, 7(2), January 2016, (Guest Editors) (misc)

**Empirical Inference (2010-2015)**
Scientific Advisory Board Report, 2016 (misc)

**Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set**
2016 (misc)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Toward a Theory of Consciousness**
In *The Cognitive Neurosciences*, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

**Text Clustering with Mixture of von Mises-Fisher Distributions**
In *Text mining: classification, clustering, and applications*, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

**Data Mining for Biologists**
In *Biological Data Mining in Protein Interaction Networks*, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

**Large Margin Methods for Part of Speech Tagging**
In *Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods*, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

**Covariate shift and local learning by distribution matching**
In *Dataset Shift in Machine Learning*, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

**An introduction to Kernel Learning Algorithms**
In *Kernel Methods for Remote Sensing Data Analysis*, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

**Robust ensemble learning**
In *Advances in Large Margin Classifiers*, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Entropy numbers for convex combinations and MLPs**
In *Advances in Large Margin Classifiers*, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

**Natural Regularization from Generative Models**
In *Advances in Large Margin Classifiers*, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Solving Satisfiability Problems with Genetic Algorithms**
In *Genetic Algorithms and Genetic Programming at Stanford 2000*, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)

**Statistical Learning and Kernel Methods**
In *CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431*, *CISM Courses and Lectures, International Centre for
Mechanical Sciences*, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

**Kernel principal component analysis.**
In *Advances in Kernel Methods—Support Vector Learning*, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

**Entropy numbers, operators and support vector kernels.**
In *Advances in Kernel Methods - Support Vector Learning*, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

**Übersicht durch Übersehen**
*Frankfurter Allgemeine Zeitung , Wissenschaftsbeilage*, March 1998 (misc)

**Support-Vektor-Lernen**
In *Ausgezeichnete Informatikdissertationen 1997*, pages: 135-150, (Editors: G Hotz and H Fiedler and P Gorny and W Grass and S Hölldobler and IO Kerner and R Reischuk), Teubner Verlag, Stuttgart, 1998 (inbook)