Header logo is ei


2019


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted

[BibTex]

2019

[BibTex]


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory

Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding

Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA

Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted

[BibTex]

[BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension

Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Meta learning variational inference for prediction

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Lutter, M., Ritter, C., Peters, J.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

link (url) [BibTex]

link (url) [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

link (url) [BibTex]

link (url) [BibTex]


no image
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments

Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.

Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference) Accepted

link (url) [BibTex]

link (url) [BibTex]


no image
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

link (url) [BibTex]

link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted

arXiv [BibTex]

arXiv [BibTex]


no image
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features

von Kügelgen, J., Mey, A., Loog, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Sobolev Descent

Mroueh, Y., Sercu, T., Raj, A.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1351-1360, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

PDF PDF link (url) [BibTex]

PDF PDF link (url) [BibTex]


Thumb xl 543 figure0 1
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization

de Roos, F., Hennig, P.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

Abstract
Pre-conditioning is a well-known concept that can significantly improve the convergence of optimization algorithms. For noise-free problems, where good pre-conditioners are not known a priori, iterative linear algebra methods offer one way to efficiently construct them. For the stochastic optimization problems that dominate contemporary machine learning, however, this approach is not readily available. We propose an iterative algorithm inspired by classic iterative linear solvers that uses a probabilistic model to actively infer a pre-conditioner in situations where Hessian-projections can only be constructed with strong Gaussian noise. The algorithm is empirically demonstrated to efficiently construct effective pre-conditioners for stochastic gradient descent and its variants. Experiments on problems of comparably low dimensionality show improved convergence. In very high-dimensional problems, such as those encountered in deep learning, the pre-conditioner effectively becomes an automatic learning-rate adaptation scheme, which we also empirically show to work well.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs

Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Kernel Stein Tests for Multiple Model Comparison

Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

[BibTex]

[BibTex]


no image
MYND: A Platform for Large-scale Neuroscientific Studies

Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted

[BibTex]

[BibTex]


no image
A Kernel Stein Test for Comparing Latent Variable Models

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.

2019 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

arXiv [BibTex]

arXiv [BibTex]

2014


Thumb xl fop
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

website pdf DOI Project Page [BibTex]

2014

website pdf DOI Project Page [BibTex]


Thumb xl ps page panel
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


no image
Seeing the Arrow of Time

Pickup, L., Zheng, P., Donglai, W., YiChang, S., Changshui, Z., Zisserman, A., Schölkopf, B., Freeman, W.

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages: 2043-2050, IEEE, CVPR, June 2014 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb xl aistats2014
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
A Visual Analytics Approach to Study Anatomic Covariation

Hermann, M., Schunke, A., Schultz, T., Klein, R.

In Proceedings of IEEE Pacific Visualization 2014, pages: 161-168, March 2014 (inproceedings)

Abstract
Gaining insight into anatomic covariation helps the understanding of organismic shape variability in general and is of particular interest for delimiting morphological modules. Generation of hypotheses on structural covariation is undoubtedly a highly creative process, and as such, requires an exploratory approach. In this work we propose a new local anatomic covariance tensor which enables interactive visualizations to explore covariation at different levels of detail, stimulating rapid formation and (qualitative) evaluation of hypotheses. The effectiveness of the presented approach is demonstrated on a muCT dataset of mouse mandibles for which results from the literature are successfully reproduced, while providing a more detailed representation of covariation compared to state-of-the-art methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Multi-Task Feature Selection on Multiple Networks via Maximum Flows

Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In Proceedings of the 2014 SIAM International Conference on Data Mining , pages: 199-207, SIAM, 2014 (inproceedings)

Web PDF DOI [BibTex]

Web PDF DOI [BibTex]


no image
Quantifying Information Overload in Social Media and its Impact on Social Contagions

Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.

In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Interaction Primitives for Human-Robot Cooperation Tasks

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 2831-2837, IEEE, ICRA, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Predict Phases of Manipulation Tasks as Hidden States

Kroemer, O., van Hoof, H., Neumann, G., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 4009-4014, IEEE, ICRA, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes

Wiens, V., Schlaffke, L., Schmidt-Wilcke, T., Schultz, T.

In Eurographics Conference on Visualization, Short Papers, (Editors: Elmqvist, N. and Hlawitschka, M. and Kennedy, J.), EuroVis, 2014 (inproceedings)

Abstract
Standard streamtubes for the visualization of diffusion MRI data are rendered either with a circular or with an elliptic cross section whose aspect ratio indicates the relative magnitudes of the medium and minor eigenvalues. Inspired by superquadric tensor glyphs, we propose to render streamtubes with a superquadric cross section, which develops sharp edges to more clearly convey the orientation of the second and third eigenvectors where they are uniquely defined, while maintaining a circular shape when the smaller two eigenvalues are equal. As a second contribution, we apply our novel superquadric streamtubes to visualize uncertainty in the tracking direction of HARDI tractography, which we represent using a novel propagation uncertainty tensor.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Permutation-Based Kernel Conditional Independence Test

Doran, G., Muandet, K., Zhang, K., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages: 132-141, (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon, UAI2014, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A unifying view of representer theorems

Argyriou, A., Dinuzzo, F.

In Proceedings of the 31th International Conference on Machine Learning, 32, pages: 748-756, (Editors: Xing, E. P. and Jebera, T.), ICML, 2014 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Riemannian Sparse Coding for Positive Definite Matrices

Cherian, A., Sra, S.

In 13th European Conference on Computer Vision, LNCS 8691, pages: 299-314, (Editors: Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.), Springer, ECCV, 2014 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Mask-Specific Inpainting with Deep Neural Networks

Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.

In Pattern Recognition (GCPR 2014), pages: 523-534, (Editors: X Jiang, J Hornegger, and R Koch), Springer, 2014, Lecture Notes in Computer Science (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Randomized Nonlinear Component Analysis

Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 1359-1367, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Causal and Anti-Causal Learning in Pattern Recognition for Neuroimaging

Weichwald, S., Schölkopf, B., Ball, T., Grosse-Wentrup, M.

In 4th International Workshop on Pattern Recognition in Neuroimaging (PRNI), IEEE , PRNI, 2014 (inproceedings)

PDF Arxiv DOI [BibTex]

PDF Arxiv DOI [BibTex]


no image
Bayesian Gait Optimization for Bipedal Locomotion

Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.

In Proceedings of the 8th International Conference on Learning and Intelligent Optimization , LNCS 8426, pages: 274-290, Lecture Notes in Computer Science, (Editors: Pardalos, PM., Resende, MGC., Vogiatzis, C., and Walteros, JL.), Springer, LION, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]