Charpiat, G., Hofmann, M., Schölkopf, B.
Kernel methods in medical imaging
In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)
O’Donnell, L. J., Schultz, T.
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data
In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)
Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.
Justifying Information-Geometric Causal Inference
In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)
Grosse-Wentrup, M., Schölkopf, B.
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)
In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.
Semi-supervised learning in causal and anticausal settings
In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Sra, S.
Tractable large-scale optimization in machine learning
In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)
Seldin, Y., Schölkopf, B.
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension
In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Altun, Y., Hofmann, T., Tsochantaridis, I.
Support Vector Machine Learning for Interdependent and Structured Output Spaces
In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Jegelka, S., Gretton, A.
Brisk Kernel ICA
In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Chapelle, O.
Training a Support Vector Machine in the Primal
In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)
Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.
Approximation Methods for Gaussian Process Regression
In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Altun, Y., Smola, A.
Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces
In Predicting Structured Data, pages: 283-300, Advances in neural information processing systems, (Editors: BakIr, G. H., T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V.N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Collobert, R., Sinz, F., Weston, J., Bottou, L.
Trading Convexity for Scalability
In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals
In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Weston, J., Bakir, G., Bousquet, O., Mann, T., Noble, W., Schölkopf, B.
Joint Kernel Maps
In Predicting Structured Data, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach
In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)
Rieping, W., Habeck, M., Nilges, M.
Probabilistic Structure Calculation
In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)
BakIr, G., Schölkopf, B., Weston, J.
On the Pre-Image Problem in Kernel Methods
In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)
Dinuzzo, F., De Nicolao, G.
Some comments on ν-SVM
In A tribute to Antonio Lepschy, pages: -, (Editors: Picci, G. , M. E. Valcher), Edizione Libreria Progetto, Padova, Italy, 2007 (inbook)
Shin, H., Tsuda, K.
Prediction of Protein Function from Networks
In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
Zhou, D., Schölkopf, B.
Discrete Regularization
In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
Lal, T., Chapelle, O., Schölkopf, B.
Combining a Filter Method with SVMs
In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)
Lal, T., Chapelle, O., Weston, J., Elisseeff, A.
Embedded methods
In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)
Schölkopf, B., Smola, A.
Support Vector Machines
In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)
Navia-Vázquez, A., Schölkopf, B.
Statistical Learning and Kernel Methods
In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Schölkopf, B., Smola, A.
A Short Introduction to Learning with Kernels
In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Smola, A., Schölkopf, B.
Bayesian Kernel Methods
In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)
Elisseeff, A., Pontil, M.
Stability of ensembles of kernel machines
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)