Grimm, Dominik
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)
Sgouritsa, E.
Causal Discovery Beyond Conditional Independences
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)
Muandet, K.
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)
Schuler, C.
Machine Learning Approaches to Image Deconvolution
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)
Charpiat, G., Hofmann, M., Schölkopf, B.
Kernel methods in medical imaging
In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)
Loktyushin, A.
Blind Retrospective Motion Correction of MR Images
University of Tübingen, Germany, May 2015 (phdthesis)
O’Donnell, L. J., Schultz, T.
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data
In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)
Hohmann, M.
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)
Gao, M.
Sequential Image Deconvolution Using Probabilistic Linear Algebra
Technical University of Munich, Germany, 2015 (mastersthesis)
Casarsa de Azevedo, L.
Causal Inference in Neuroimaging
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)
Ibarra Chaoul, A.
The effect of frowning on attention
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)
Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.
Justifying Information-Geometric Causal Inference
In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)
Schober, M.
Camera-specific Image Denoising
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)
Grosse-Wentrup, M., Schölkopf, B.
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)
In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.
Semi-supervised learning in causal and anticausal settings
In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Sra, S.
Tractable large-scale optimization in machine learning
In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)
Burger, HC.
Modelling and Learning Approaches to Image Denoising
Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)
Lippert, C.
Linear mixed models for genome-wide association studies
University of Tübingen, Germany, 2013 (phdthesis)
Seldin, Y., Schölkopf, B.
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension
In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Mülling, K.
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis
Technical University Darmstadt, Germany, 2013 (phdthesis)
Wang, Z.
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models
Technical University Darmstadt, Germany, 2013 (phdthesis)
Kienzle, W.
Real-Time Face Detection
Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)
Pfingsten, T.
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport
Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)
Gretton, A.
Kernel Methods for Classification and Signal Separation
pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)
Schölkopf, B., Smola, A.
Support Vector Machines
In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)
Altun, Y.
Large margin Methods in Label Sequence Learning
Brown University, Providence, RI, USA, 2003 (mastersthesis)
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
Jäkel, F.
m-Alternative Forced Choice—Improving the Efficiency of the
Method of Constant Stimuli
Biologische Kybernetik, Graduate School for Neural and
Behavioural Sciences, Tübingen, 2003 (diplomathesis)
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)
Navia-Vázquez, A., Schölkopf, B.
Statistical Learning and Kernel Methods
In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Schölkopf, B., Smola, A.
A Short Introduction to Learning with Kernels
In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Smola, A., Schölkopf, B.
Bayesian Kernel Methods
In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)
Elisseeff, A., Pontil, M.
Stability of ensembles of kernel machines
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)