Header logo is ei


2015


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

[BibTex]

2015

[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

link (url) [BibTex]

link (url) [BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data

O’Donnell, L. J., Schultz, T.

In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

[BibTex]

[BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

DOI [BibTex]

DOI [BibTex]

2012


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

2012

Web [BibTex]


no image
Probabilistic Modelling of Expression Variation in Modern eQTL Studies

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, October 2012 (mastersthesis)

[BibTex]

[BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J.

Technische Universität Darmstadt, Germany, March 2012 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

Toussaint, M., Storkey, A., Harmeling, S.

In Inference and Learning in Dynamic Models, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press

PDF [BibTex]

PDF [BibTex]


no image
Active Learning Methods in Classification of Remote Sensing Images

Bruzzone, L., Persello, C., Demir, B.

In Signal and Image Processing for Remote Sensing, (Editors: CH Chen), CRC Press, Boca Raton, FL, USA, January 2012 (inbook) In press

[BibTex]

[BibTex]


no image
Inferential structure determination from NMR data

Habeck, M.

In Bayesian methods in structural bioinformatics, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)

[BibTex]

[BibTex]


no image
Structure and Dynamics of Diffusion Networks

Gomez Rodriguez, M.

Department of Electrical Engineering, Stanford University, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Robot Learning

Sigaud, O., Peters, J.

In Encyclopedia of the sciences of learning, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning in Robotics: A Survey

Kober, J., Peters, J.

In Reinforcement Learning, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)

Abstract
As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Blind Deconvolution in Scientific Imaging & Computational Photography

Hirsch, M.

Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Higher-Order Tensors in Diffusion MRI

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted

[BibTex]

[BibTex]


no image
Mining correlated loci at a genome-wide scale

Velkov, V.

Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)

[BibTex]

[BibTex]

2009


no image
Toward a Theory of Consciousness

Tononi, G., Balduzzi, D.

In The Cognitive Neurosciences, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

Web [BibTex]

2009

Web [BibTex]


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

PDF [BibTex]

PDF [BibTex]


no image
A PAC-Bayesian Approach to Structure Learning

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Text Clustering with Mixture of von Mises-Fisher Distributions

Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.

In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Data Mining for Biologists

Tsuda, K.

In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

Abstract
In this tutorial chapter, we review basics about frequent pattern mining algorithms, including itemset mining, association rule mining and graph mining. These algorithms can find frequently appearing substructures in discrete data. They can discover structural motifs, for example, from mutation data, protein structures and chemical compounds. As they have been primarily used for business data, biological applications are not so common yet, but their potential impact would be large. Recent advances in computers including multicore machines and ever increasing memory capacity support the application of such methods to larger datasets. We explain technical aspects of the algorithms, but do not go into details. Current biological applications are summarized and possible future directions are given.

Web [BibTex]

Web [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

Web [BibTex]

Web [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

PDF Web [BibTex]

PDF Web [BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2005


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

PDF PDF [BibTex]

2005

PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Liver Perfusion using Level Set Methods

Nowozin, S.

Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Discriminative Methods for Label Sequence Learning

Altun, Y.

Brown University, Providence, RI, USA, May 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, TG.

Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)

Abstract
A common task in psychophysics is to measure the psychometric function. A psychometric function can be described by its shape and four parameters: offset or threshold, slope or width, false alarm rate or chance level and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. A new Bayesian adaptive psychometric method placing trials by minimising the expected entropy of the posterior probabilty dis- tribution over a set of possible stimuli is introduced. The method is more flexible, faster and at least as efficient as the established method (Kontsevich and Tyler, 1999). Comparably accurate (2dB) threshold and slope estimates can be obtained after about 30 and 500 trials, respectively. By using a dynamic termination criterion the efficiency can be further improved. The method can be applied to all experimental designs including yes/no designs and allows acquisition of any set of free parameters. By weighting the importance of parameters one can include nuisance parameters and adjust the relative expected errors. Use of nuisance parameters may lead to more accurate estimates than assuming a guessed fixed value. Block designs are supported and do not harm the performance if a sufficient number of trials are performed. The method was evaluated by computer simulations in which the role of parametric assumptions, its robustness, the quality of different point estimates, the effect of dynamic termination criteria and many other settings were investigated.

[BibTex]

[BibTex]


no image
Support Vector Classification of Images with Local Features

Blaschko, MB.

Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application

Shin, H.

Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]