Schober, M.
Camera-specific Image Denoising
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)
Grosse-Wentrup, M., Schölkopf, B.
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)
In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.
Semi-supervised learning in causal and anticausal settings
In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Sra, S.
Tractable large-scale optimization in machine learning
In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)
Burger, HC.
Modelling and Learning Approaches to Image Denoising
Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)
Lippert, C.
Linear mixed models for genome-wide association studies
University of Tübingen, Germany, 2013 (phdthesis)
Seldin, Y., Schölkopf, B.
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension
In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Mülling, K.
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis
Technical University Darmstadt, Germany, 2013 (phdthesis)
Wang, Z.
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models
Technical University Darmstadt, Germany, 2013 (phdthesis)
Schmidt, M., Kim, D., Sra, S.
Projected Newton-type methods in machine learning
In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)
von Luxburg, U., Schölkopf, B.
Statistical Learning Theory: Models, Concepts, and Results
In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)
Lang, A.
Crowdsourcing for optimisation of deconvolution methods via an iPhone application
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)
Dinuzzo, F.
Learning functions with kernel methods
University of Pavia, Italy, January 2011 (phdthesis)
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)
Ihme, K., Zander, TO.
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI
In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)
Borgwardt, KM.
Kernel Methods in Bioinformatics
In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)
Rosas, P., Wichmann, F.
Cue Combination: Beyond Optimality
In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)
Nguyen-Tuong, D.
Model Learning in Robot Control
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)
Shin, H., Tsuda, K.
Prediction of Protein Function from Networks
In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
Zhou, D., Schölkopf, B.
Discrete Regularization
In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
Nickisch, H.
Extraction of visual features from natural video data using Slow Feature Analysis
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2006 (diplomathesis)
Deisenroth, MP.
An Online-Computation Approach to Optimal Finite-Horizon State-Feedback Control of Nonlinear Stochastic Systems
Biologische Kybernetik, Universität Karlsruhe (TH), Karlsruhe, Germany, August 2006 (diplomathesis)
Nowozin, S.
Object Classification using Local Image Features
Biologische Kybernetik, Technical University of Berlin, Berlin, Germany, May 2006 (diplomathesis)
Huhle, B.
Kernel PCA for Image Compression
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)
Kuss, M.
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning
Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)
Radl, A.
Semigroups applied to transport and queueing processes
Biologische Kybernetik, Eberhard Karls Universität, Tübingen, 2006 (phdthesis)
Saigo, H.
Local Alignment Kernels for Protein Homology Detection
Biologische Kybernetik, Kyoto University, Kyoto, Japan, 2006 (phdthesis)
Lal, T., Chapelle, O., Schölkopf, B.
Combining a Filter Method with SVMs
In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)
Lal, T., Chapelle, O., Weston, J., Elisseeff, A.
Embedded methods
In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
Lal, TN.
Machine Learning Methods for Brain-Computer Interdaces
Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)
Nowozin, S.
Liver Perfusion using Level Set Methods
Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)
Altun, Y.
Discriminative Methods for Label Sequence Learning
Brown University, Providence, RI, USA, May 2005 (phdthesis)
Tanner, TG.
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain
Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)
Blaschko, MB.
Support Vector Classification of Images with Local Features
Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)
Shin, H.
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application
Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)
Ong, CS.
Kernels: Regularization and Optimization
Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)
Schölkopf, B., Smola, A.
Support Vector Machines and Kernel Algorithms
In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)
Wagemans, J., Wichmann, F., de Beeck, H.
Visual perception
I: Basic principles
In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)
Kienzle, W.
Real-Time Face Detection
Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)
Pfingsten, T.
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport
Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)
Gretton, A.
Kernel Methods for Classification and Signal Separation
pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)
Schölkopf, B., Smola, A.
Support Vector Machines
In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)
Altun, Y.
Large margin Methods in Label Sequence Learning
Brown University, Providence, RI, USA, 2003 (mastersthesis)
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
Jäkel, F.
m-Alternative Forced Choice—Improving the Efficiency of the
Method of Constant Stimuli
Biologische Kybernetik, Graduate School for Neural and
Behavioural Sciences, Tübingen, 2003 (diplomathesis)
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)