Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.
Robot Learning
In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)
Peters, J., Bagnell, J.
Policy Gradient Methods
In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)
Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking
In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)
Janzing, D.
Statistical Asymmetries Between Cause and Effect
In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)
Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C. J., Schölkopf, B.
From Optimal Transport to Generative Modeling: the VEGAN cookbook
2017 (techreport)
Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.
Single-Source Domain Adaptation with Target and Conditional Shift
In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)
Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.
Higher-Order Tensors in Diffusion Imaging
In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)
Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.
Fuzzy Fibers: Uncertainty in dMRI Tractography
In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)
Sra, S.
Nonconvex Proximal Splitting with Computational Errors
In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)
Balcan, M., Urner, R.
Active Learning - Modern Learning Theory
In Encyclopedia of Algorithms, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)
Langovoy, M., Wittich, O.
Computationally efficient algorithms for statistical image processing: Implementation in R
(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)
Seeger, M., Nickisch, H.
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference
Max Planck Institute for Biological Cybernetics, December 2010 (techreport)
Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.
Markerless tracking of Dynamic 3D Scans of Faces
In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)
Peters, J., Bagnell, J.
Policy Gradient Methods
In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)
Seldin, Y.
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)
Tandon, R., Sra, S.
Sparse nonnegative matrix approximation: new formulations and algorithms
(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)
Langovoy, M., Wittich, O.
Robust nonparametric detection of objects in noisy images
(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)
Seeger, M., Nickisch, H.
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models
Max Planck Institute for Biological Cybernetics, August 2010 (techreport)
Jegelka, S., Bilmes, J.
Cooperative Cuts for Image Segmentation
(UWEETR-1020-0003), University of Washington, Washington DC, USA, August 2010 (techreport)
Barbero, A., Sra, S.
Fast algorithms for total-variationbased optimization
(194), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2010 (techreport)
Nickisch, H., Rasmussen, C.
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
Max Planck Institute for Biological Cybernetics, June 2010 (techreport)
Sra, S.
Generalized Proximity and Projection with Norms and Mixed-norms
(192), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2010 (techreport)
Jegelka, S., Bilmes, J.
Cooperative Cuts: Graph Cuts with Submodular Edge Weights
(189), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, March 2010 (techreport)
Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.
Learning Continuous Grasp Affordances by Sensorimotor Exploration
In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Kober, J., Mohler, B., Peters, J.
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling
In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Nguyen-Tuong, D., Seeger, M., Peters, J.
Real-Time Local GP Model Learning
In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.
Machine Learning Methods for Automatic Image Colorization
In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)
Bruzzone, L., Persello, C.
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data
In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)
Steudel, B., Ay, N.
Information-theoretic inference of common ancestors
Computing Research Repository (CoRR), abs/1010.5720, pages: 18, 2010 (techreport)
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
Zhou, D., Xiao, B., Zhou, H., Dai, R.
Global Geometry of SVM Classifiers
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.
Computationally Efficient Face Detection
(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)
Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.
Kernel-based nonlinear blind source separation
EU-Project BLISS, January 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)
Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.
Observations on the Nyström Method for Gaussian Process Prediction
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)
Schölkopf, B., Smola, A., Müller, K.
Kernel principal component analysis.
In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.
Estimating the support of a high-dimensional distribution
(MSR-TR-99-87), Microsoft Research, 1999 (techreport)
Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.
Generalization Bounds via Eigenvalues of the Gram matrix
(99-035), NeuroCOLT, 1999 (techreport)
Smola, A., Mangasarian, O., Schölkopf, B.
Sparse kernel feature analysis
(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)
Williamson, R., Smola, A., Schölkopf, B.
Entropy numbers, operators and support vector kernels.
In Advances in Kernel Methods - Support Vector Learning, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)