Besserve, M., Schölkopf, B., Logothetis, N. K.
Unsupervised identification of neural events in local field potentials
44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)
Besserve, M.
Quantifying statistical dependency
Research Network on Learning Systems Summer School, 2014 (talk)
Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.
Single-Source Domain Adaptation with Target and Conditional Shift
In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)
Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.
Higher-Order Tensors in Diffusion Imaging
In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)
Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.
Fuzzy Fibers: Uncertainty in dMRI Tractography
In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)
Sra, S.
Nonconvex Proximal Splitting with Computational Errors
In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)
Balcan, M., Urner, R.
Active Learning - Modern Learning Theory
In Encyclopedia of Algorithms, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)
Divine, M. R., Disselhorst, J. A., Katiyar, P., Pichler, B. J.
Using a population based Gaussian Mixture Model on fused [18]F-FDG PET and DW-MRI images accurately segments the tumor microenvironment into clinically relevant compartments capable of guiding therapy
European Molecular Imaging Meeting, 2014 (talk)
Janzing, D.
Causal Inference from Passive Observations
24th Summer School University of Jyväskylā, Finland, August, 2014 (talk)
Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI
Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience},
year = {2013},
month = {7},
volume = {14},
number = {Supplement 1},
pages = {A1}, (talk)
Grosse-Wentrup, M., Schölkopf, B.
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)
In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.
Semi-supervised learning in causal and anticausal settings
In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Sra, S.
Tractable large-scale optimization in machine learning
In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)
Mantlik, F., Bezrukov, I., Hofmann, M., Schölkopf, B., Pichler, B.
MR-Based Attenuation Correction for Combined Brain PET/MR: Robustness of Atlas- and Pattern Recognition Method to Atlas Registration Failures
IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE MIC), 2013 (talk)
Muandet, K.
Domain Generalization via Invariant Feature Representation
30th International Conference on Machine Learning (ICML2013), 2013 (talk)
Seldin, Y., Schölkopf, B.
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension
In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
Peters, J., Schaal, S.
Learning Control and Planning from the View of Control Theory and Imitation
NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)
Schaal, S., Peters, J.
Recurrent neural networks from learning attractor dynamics
NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)
Bousquet, O.
Statistical Learning Theory
Machine Learning Summer School, August 2003 (talk)
Bousquet, O.
Remarks on Statistical Learning Theory
Machine Learning Summer School, August 2003 (talk)
Bousquet, O.
Rademacher and Gaussian averages in Learning Theory
Universite de Marne-la-Vallee, March 2003 (talk)
Bousquet, O., Schölkopf, B.
Statistical Learning Theory
March 2003 (talk)
Bousquet, O.
Concentration Inequalities and Data-Dependent Error Bounds
Uni. Jena, February 2003 (talk)
Franz, MO.
Introduction: Robots with Cognition?
6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)
Schölkopf, B., Smola, A.
Support Vector Machines
In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)
Navia-Vázquez, A., Schölkopf, B.
Statistical Learning and Kernel Methods
In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Schölkopf, B., Smola, A.
A Short Introduction to Learning with Kernels
In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Smola, A., Schölkopf, B.
Bayesian Kernel Methods
In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)
Elisseeff, A., Pontil, M.
Stability of ensembles of kernel machines
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)
Bousquet, O.
Transductive Learning: Motivation, Models, Algorithms
January 2002 (talk)
Schölkopf, B., Smola, A., Müller, K.
Kernel principal component analysis.
In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)
Williamson, R., Smola, A., Schölkopf, B.
Entropy numbers, operators and support vector kernels.
In Advances in Kernel Methods - Support Vector Learning, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)