Header logo is ei


2018


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

link (url) [BibTex]

2018

link (url) [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

Project Page [BibTex]

Project Page [BibTex]

2016


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

[BibTex]

2016

[BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

Arxiv [BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (unpublished) Submitted

[BibTex]

[BibTex]


no image
Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

Web [BibTex]

2013

Web [BibTex]


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

[BibTex]

[BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

PDF [BibTex]

PDF [BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

[BibTex]

[BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Evaluation of a new, large field of view, small animal PET/MR system

Hossain, M., Wehrl, H., Lankes, K., Liu, C., Bezrukov, I., Reischl, G., Pichler, B.

50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

Toussaint, M., Storkey, A., Harmeling, S.

In Inference and Learning in Dynamic Models, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press

PDF [BibTex]

PDF [BibTex]


no image
Active Learning Methods in Classification of Remote Sensing Images

Bruzzone, L., Persello, C., Demir, B.

In Signal and Image Processing for Remote Sensing, (Editors: CH Chen), CRC Press, Boca Raton, FL, USA, January 2012 (inbook) In press

[BibTex]

[BibTex]


no image
Support Measure Machines for Quasar Target Selection

Muandet, K.

Astro Imaging Workshop, 2012 (talk)

Abstract
In this talk I will discuss the problem of quasar target selection. The objects attributes in astronomy such as fluxes are often subjected to substantial and heterogeneous measurement uncertainties, especially for the medium-redshift between 2.2 and 3.5 quasars which is relatively rare and must be targeted down to g ~ 22 mag. Most of the previous works for quasar target selection includes UV-excess, kernel density estimation, a likelihood approach, and artificial neural network cannot directly deal with the heterogeneous input uncertainties. Recently, extreme deconvolution (XD) has been used to tackle this problem in a well-posed manner. In this work, we present a discriminative approach for quasar target selection that can deal with input uncertainties directly. To do so, we represent each object as a Gaussian distribution whose mean is the object's attribute vector and covariance is the given flux measurement uncertainty. Given a training set of Gaussian distributions, the support measure machines (SMMs) algorithm are trained and used to build the quasar targeting catalog. Preliminary results will also be presented. Joint work with Jo Bovy and Bernhard Sch{\"o}lkopf

Web [BibTex]


no image
PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics

Seldin, Y.

Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Lankes, K., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Inferential structure determination from NMR data

Habeck, M.

In Bayesian methods in structural bioinformatics, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)

[BibTex]

[BibTex]


no image
Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Robot Learning

Sigaud, O., Peters, J.

In Encyclopedia of the sciences of learning, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning in Robotics: A Survey

Kober, J., Peters, J.

In Reinforcement Learning, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)

Abstract
As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

Web Web [BibTex]

Web Web [BibTex]


no image
Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Pichler, B.

Molekulare Bildgebung (MoBi), 2012 (talk)

[BibTex]

[BibTex]


no image
Structured Apprenticeship Learning

Boularias, A., Kroemer, O., Peters, J.

European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis and Its Applications

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Kernel Bellman Equations in POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion MRI

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted

[BibTex]

[BibTex]


no image
Beta oscillations propagate as traveling waves in the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

[BibTex]

[BibTex]

2006


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF [BibTex]

2006

PDF [BibTex]


no image
Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Reward-Weighted Regression

Peters, J.

NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph boosting for molecular QSAR analysis

Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Abstract
We propose a new boosting method that systematically combines graph mining and mathematical programming-based machine learning. Informative and interpretable subgraph features are greedily found by a series of graph mining calls. Due to our mathematical programming formulation, subgraph features and pre-calculated real-valued features are seemlessly integrated. We tested our algorithm on a quantitative structure-activity relationship (QSAR) problem, which is basically a regression problem when given a set of chemical compounds. In benchmark experiments, the prediction accuracy of our method favorably compared with the best results reported on each dataset.

Web [BibTex]

Web [BibTex]


no image
Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

Abstract
We propose a new approach to infer the causal structure that has generated the observed statistical dependences among n random variables. The idea is that the factorization of the joint measure of cause and effect into P(cause)P(effect|cause) leads typically to simpler conditionals than non-causal factorizations. To evaluate the complexity of the conditionals we have tried two methods. First, we have compared them to those which maximize the conditional entropy subject to the observed first and second moments since we consider the latter as the simplest conditionals. Second, we have fitted the data with conditional probability measures being exponents of functions in an RKHS space and defined the complexity by a Hilbert-space semi-norm. Such a complexity measure has several properties that are useful for our purpose. We describe some encouraging results with both methods applied to real-world data. Moreover, we have combined constraint-based approaches to causal discovery (i.e., methods using only information on conditional statistical dependences) with our method in order to distinguish between causal hypotheses which are equivalent with respect to the imposed independences. Furthermore, we compare the performance to Bayesian approaches to causal inference.

Web [BibTex]