32 results
(View BibTeX file of all listed publications)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik**
Springer, 2013 (book)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Semi-Supervised Learning**
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

**Gaussian Processes for Machine Learning**
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

**Combining a Filter Method with SVMs**
In *Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207*, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Embedded methods**
In *Feature Extraction: Foundations and Applications*, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Support Vector Machines and Kernel Algorithms**
In *Encyclopedia of Biostatistics (2nd edition), Vol. 8*, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

**Visual perception
I: Basic principles**
In *Handbook of Cognition*, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

**Support Vector Machines**
In *Handbook of Brain Theory and Neural Networks (2nd edition)*, pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

**Extension of the nu-SVM range for classification**
In *Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190*, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

**An Introduction to Support Vector Machines**
In *Recent Advances and Trends in Nonparametric Statistics
*, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

**Statistical Learning and Kernel Methods in Bioinformatics**
In *Artificial Intelligence and Heuristic Methods in Bioinformatics*, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

**Statistical Learning and Kernel Methods**
In *Adaptivity and Learning—An Interdisciplinary Debate*, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**A Short Introduction to Learning with Kernels**
In *Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600*, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**Bayesian Kernel Methods**
In *Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600*, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

**Stability of ensembles of kernel machines**
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

**Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond**
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

**Robust ensemble learning**
In *Advances in Large Margin Classifiers*, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Entropy numbers for convex combinations and MLPs**
In *Advances in Large Margin Classifiers*, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

**Natural Regularization from Generative Models**
In *Advances in Large Margin Classifiers*, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Advances in Large Margin Classifiers**
pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

**Solving Satisfiability Problems with Genetic Algorithms**
In *Genetic Algorithms and Genetic Programming at Stanford 2000*, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)

**Statistical Learning and Kernel Methods**
In *CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431*, *CISM Courses and Lectures, International Centre for
Mechanical Sciences*, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)