Header logo is ei



no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

[BibTex]

[BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (unpublished) Submitted

[BibTex]

[BibTex]

2013


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

[BibTex]

[BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

Web [BibTex]

Web [BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

[BibTex]

[BibTex]

2007


no image
Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Web [BibTex]

2007

Web [BibTex]


no image
Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Predicting Structured Data

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.

pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

Web [BibTex]

Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason to ignore this possibility. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approximation Methods for Gaussian Process Regression

Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.

In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
A wealth of computationally efficient approximation methods for Gaussian process regression have been recently proposed. We give a unifying overview of sparse approximations, following Quiñonero-Candela and Rasmussen (2005), and a brief review of approximate matrix-vector multiplication methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large-Scale Kernel Machines

Bottou, L., Chapelle, O., DeCoste, D., Weston, J.

pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically.

Web [BibTex]

Web [BibTex]


no image
Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Altun, Y., Smola, A.

In Predicting Structured Data, pages: 283-300, Advances in neural information processing systems, (Editors: BakIr, G. H., T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V.N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
In this paper we study the problem of estimating conditional probability distributions for structured output prediction tasks in Reproducing Kernel Hilbert Spaces. More specically, we prove decomposition results for undirected graphical models, give constructions for kernels, and show connections to Gaussian Process classi- cation. Finally we present ecient means of solving the optimization problem and apply this to label sequence learning. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

Web [BibTex]

Web [BibTex]


no image
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference

Schölkopf, B., Platt, J., Hofmann, T.

Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists--interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Web [BibTex]

Web [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how nonconvexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals

Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Joint Kernel Maps

Weston, J., Bakir, G., Bousquet, O., Mann, T., Noble, W., Schölkopf, B.

In Predicting Structured Data, pages: 67-84, Advances in neural information processing systems, (Editors: GH Bakir and T Hofmann and B Schölkopf and AJ Smola and B Taskar and SVN Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Web [BibTex]

Web [BibTex]


no image
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach

Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic Structure Calculation

Rieping, W., Habeck, M., Nilges, M.

In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

DOI [BibTex]

DOI [BibTex]


no image
Some comments on ν-SVM

Dinuzzo, F., De Nicolao, G.

In A tribute to Antonio Lepschy, pages: -, (Editors: Picci, G. , M. E. Valcher), Edizione Libreria Progetto, Padova, Italy, 2007 (inbook)

[BibTex]

[BibTex]

2006


no image
Prediction of Protein Function from Networks

Shin, H., Tsuda, K.

In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
In computational biology, it is common to represent domain knowledge using graphs. Frequently there exist multiple graphs for the same set of nodes, representing information from different sources, and no single graph is sufficient to predict class labels of unlabelled nodes reliably. One way to enhance reliability is to integrate multiple graphs, since individual graphs are partly independent and partly complementary to each other for prediction. In this chapter, we describe an algorithm to assign weights to multiple graphs within graph-based semi-supervised learning. Both predicting class labels and searching for weights for combining multiple graphs are formulated into one convex optimization problem. The graph-combining method is applied to functional class prediction of yeast proteins.When compared with individual graphs, the combined graph with optimized weights performs significantly better than any single graph.When compared with the semidefinite programming-based support vector machine (SDP/SVM), it shows comparable accuracy in a remarkably short time. Compared with a combined graph with equal-valued weights, our method could select important graphs without loss of accuracy, which implies the desirable property of integration with selectivity.

Web [BibTex]

2006

Web [BibTex]


no image
Discrete Regularization

Zhou, D., Schölkopf, B.

In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
Many real-world machine learning problems are situated on finite discrete sets, including dimensionality reduction, clustering, and transductive inference. A variety of approaches for learning from finite sets has been proposed from different motivations and for different problems. In most of those approaches, a finite set is modeled as a graph, in which the edges encode pairwise relationships among the objects in the set. Consequently many concepts and methods from graph theory are adopted. In particular, the graph Laplacian is widely used. In this chapter we present a systemic framework for learning from a finite set represented as a graph. We develop discrete analogues of a number of differential operators, and then construct a discrete analogue of classical regularization theory based on those discrete differential operators. The graph Laplacian based approaches are special cases of this general discrete regularization framework. An important thing implied in this framework is that we have a wide choices of regularization on graph in addition to the widely-used graph Laplacian based one.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-Supervised Learning

Chapelle, O., Schölkopf, B., Zien, A.

pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

Abstract
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Web [BibTex]

Web [BibTex]


no image
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference

Weiss, Y., Schölkopf, B., Platt, J.

Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS 2005), pages: 1676, MIT Press, Cambridge, MA, USA, 19th Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2005 meeting, held in Vancouver.

Web [BibTex]

Web [BibTex]


no image
Gaussian Processes for Machine Learning

Rasmussen, CE., Williams, CKI.

pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

Abstract
Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Web [BibTex]

Web [BibTex]


no image
Machine Learning Challenges: evaluating predictive uncertainty, visual object classification and recognising textual entailment

Quinonero Candela, J., Dagan, I., Magnini, B., Lauria, F.

Proceedings of the First Pascal Machine Learning Challenges Workshop on Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment (MLCW 2005), pages: 462, Lecture Notes in Computer Science, Springer, Heidelberg, Germany, First Pascal Machine Learning Challenges Workshop (MLCW), 2006 (proceedings)

Abstract
This book constitutes the thoroughly refereed post-proceedings of the First PASCAL (pattern analysis, statistical modelling and computational learning) Machine Learning Challenges Workshop, MLCW 2005, held in Southampton, UK in April 2005. The 25 revised full papers presented were carefully selected during two rounds of reviewing and improvement from about 50 submissions. The papers reflect the concepts of three challenges dealt with in the workshop: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; the second challenge was to recognize objects from a number of visual object classes in realistic scenes; the third challenge of recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Combining a Filter Method with SVMs

Lal, T., Chapelle, O., Schölkopf, B.

In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

Abstract
Our goal for the competition (feature selection competition NIPS 2003) was to evaluate the usefulness of simple machine learning techniques. We decided to use the correlation criteria as a feature selection method and Support Vector Machines for the classification part. Here we explain how we chose the regularization parameter C of the SVM, how we determined the kernel parameter and how we estimated the number of features used for each data set. All analyzes were carried out on the training sets of the competition data. We choose the data set Arcene as an example to explain the approach step by step. In our view the point of this competition was the construction of a well performing classifier rather than the systematic analysis of a specific approach. This is why our search for the best classifier was only guided by the described methods and that we deviated from the road map at several occasions. All calculations were done with the software Spider [2004].

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Embedded methods

Lal, T., Chapelle, O., Weston, J., Elisseeff, A.

In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

Abstract
Embedded methods are a relatively new approach to feature selection. Unlike filter methods, which do not incorporate learning, and wrapper approaches, which can be used with arbitrary classifiers, in embedded methods the features selection part can not be separated from the learning part. Existing embedded methods are reviewed based on a unifying mathematical framework.

PDF Web [BibTex]

PDF Web [BibTex]

2003


no image
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), LNCS Vol. 2777

Schölkopf, B., Warmuth, M.

Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), COLT/Kernel 2003, pages: 746, Springer, Berlin, Germany, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, November 2003, Lecture Notes in Computer Science ; 2777 (proceedings)

DOI [BibTex]

2003

DOI [BibTex]


no image
Support Vector Machines

Schölkopf, B., Smola, A.

In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

[BibTex]

[BibTex]


no image
Extension of the nu-SVM range for classification

Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.

In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

[BibTex]

[BibTex]


no image
An Introduction to Support Vector Machines

Schölkopf, B.

In Recent Advances and Trends in Nonparametric Statistics , pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical Learning and Kernel Methods in Bioinformatics

Schölkopf, B., Guyon, I., Weston, J.

In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

[BibTex]

[BibTex]


no image
Statistical Learning and Kernel Methods

Navia-Vázquez, A., Schölkopf, B.

In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

[BibTex]

[BibTex]


no image
A Short Introduction to Learning with Kernels

Schölkopf, B., Smola, A.

In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

[BibTex]

[BibTex]


no image
Bayesian Kernel Methods

Smola, A., Schölkopf, B.

In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Stability of ensembles of kernel machines

Elisseeff, A., Pontil, M.

In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

[BibTex]

[BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Web [BibTex]

2002

Web [BibTex]

2001


no image
Extracting egomotion from optic flow: limits of accuracy and neural matched filters

Dahmen, H-J., Franz, MO., Krapp, HG.

In pages: 143-168, Springer, Berlin, 2001 (inbook)

[BibTex]

2001

[BibTex]